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Abstract. Symbolic automata allow transitions to carry predicates over

rich alphabet theories, such as linear arithmetic, and therefore extend

classic automata to operate over infinite alphabets, such as the set of

rational numbers. In this paper, we study the foundational problem of

learning symbolic automata. We first present ⇤⇤
, a symbolic automata

extension of Angluin’s L

⇤
algorithm for learning regular languages. Then,

we define notions of learnability that are parametric in the alphabet

theories of the symbolic automata and show how these notions nicely

compose. Specifically, we show that if two alphabet theories are learnable,
then the theory accepting the Cartesian product or disjoint union of

their alphabets is also learnable. Using these properties, we show how

existing algorithms for learning automata over large alphabets nicely fall

in our framework. Finally, we implement our algorithm in an open-source

library and evaluate it on existing automata learning benchmarks.

1 Introduction

Finite automata are a ubiquitous formalism that is simple enough to model

many real-life systems and phenomena, and they enjoy a large variety of theo-

retical properties: automata are closed under Boolean operations, have decidable

emptiness and equivalence checking procedures, and can be learned [3]. This last

problem on automata learning is the focus of this paper; learning has been stud-

ied extensively for several variations of finite automata [9, 4] and has found many

applications in program verification [2] and program synthesis [15].

Unfortunately, finite automata have an inherent limitation: they can only

operate over finite (and typically small) alphabets. Symbolic finite automata

(s-FA) allow transitions to carry predicates over rich alphabet theories, such as

linear arithmetic, and therefore extend classic automata to operate over infinite

alphabets, such as the set of rational numbers. Existing automata algorithms rely

on the alphabet being finite, and generalizing them to the symbolic setting is not

a trivial task. However, algorithms have been proposed for s-FA equivalence, for

minimization, and for performing Boolean operations. In this paper, we study

the foundational problem of learning symbolic automata.

We start by extending Angluin’s L

⇤
algorithm [3] for learning regular lan-

guages to symbolic automata. L

⇤
iteratively updates a table of evidence, con-

jectures an automaton, and then if that conjecture is not correct, repeats with

new evidence. However, at every step it must make a query to an oracle for each

character in an alphabet; thus it does not scale in practice on alphabets that are
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large and cannot be run on those that are infinite. Our algorithm, ⇤⇤
, operates

in a largely similar manner, except that the queries are asked only for a small set

of representatives, and then there is an additional stage after updating the table

of evidence during which the evidence is generalized into symbolic predicates;

these predicates form the transitions for the symbolic automaton.

We then define notions of learnability that are parametric in the alphabet

theory of the symbolic automata and show that these notions compose. For

example, if two alphabet theories are learnable, then the theory accepting the

Cartesian product of their alphabets is also learnable. We use these properties to

show how existing algorithms for learning automata over large alphabets nicely

fall in our framework: e.g., Maler and Mens present an ad hoc method for learning

automata over the alphabet Z⇥Z [13], which we show is learnable because it is

the Cartesian product of of the alphabet Z—which itself is learnable.

Finally, we implement our algorithm in an open-source symbolic automata

library and evaluate it on existing automata learning benchmarks from [13].

The implementation is modular and only requires the programmer to provide

learnable Boolean algebras as input to the learner; the disjoint union and product

algebras are implemented as meta-algebras that can be instantiated arbitrarily.

Our implementation, despite its generality, can learn the benchmarks appearing

in [13] using a similar number of equivalence and membership queries.

In summary, our contributions are:

– An algorithm for learning Symbolic Finite Automata (§ 3).

– A notion of learnability parametric in the alphabet theory that composes

over the Cartesian product and disjoint union of Boolean algebras (§ 4).

– A modular implementation of our algorithm in an existing open-source li-

brary and an evaluation on existing benchmarks (§ 5).

2 Preliminaries

In symbolic automata, transitions carry predicates over a decidable Boolean

algebra. An effective Boolean algebra A is a tuple (D, , J_K,?,>,_,^,¬) where

D is a set of domain elements;  is a set of predicates closed under the Boolean

connectives, with ?,> 2  ; J_K :  ! 2D is a denotation function such that

(i) J?K = ;, (ii) J>K = D, and (iii) for all ', 2  , J' _  K = J'K [ J K,
J' ^  K = J'K \ J K, and J¬'K = D \ J'K.
Example 1 (Equality Algebra). The equality algebra for an arbitrary set D has

predicates formed from Boolean combinations of formulas of the form �c. c = a

where a 2 D. Formally,  is generated from the Boolean closure of  0 = {'a |
a 2 D} [ {?,>} where for all a 2 D, J'aK = {a}. Example predicates in this

algebra include the predicates �c. c = 5 _ c = 10 and �c.¬(c = 0).

Example 2 (Interval Algebra). The finite union of left-closed right-open intervals

over non-negative integers (i.e. N) also forms a Boolean algebra: take the Boolean

closure of  0 = {'ij | i, j 2 N ^ i < j} [ {?,>} where J'ijK = [i, j). Example

predicates in this algebra include those (written as their denotation) of the form

[0, 5) [ [10, 15) or [50,1).
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Definition 1 (Symbolic Finite Automata). A symbolic finite automaton

(s-FA) M is a tuple (A, Q, q

init

, F,�) where A is an effective Boolean algebra,

called the alphabet; Q is a finite set of states; q

init

2 Q is the initial state;

F ✓ Q is the set of final states; and � ✓ Q⇥  A ⇥Q is the transition relation

consisting of a finite set of moves or transitions.

Characters are elements of DA, and words are finite sequences of characters,

or elements of D⇤
A. The empty word of length 0 is denoted by ✏. A move ⇢ =

(q1,', q2) 2 �, also denoted q1
'�! q2, is a transition from the source state q1

to the target state q2, where ' is the guard or predicate of the move. A move

is feasible if its guard is satisfiable. For a character a 2 DA, an a-move of M ,

denoted q1
a�! q2 is a move q1

'�! q2 such that a 2 J'K.
An s-FA M is deterministic if, for all transitions (q,'1, q1), (q,'2, q2) 2 �,

q1 6= q2 ! J'1 ^ '2K = ;; i.e., for each state q and character a there is at most one

a-move out of q. An s-FA M is complete if, for all q 2 Q,

W
(q,'i,qi)2� 'i = >; i.e.,

for each state q and character a there exists an a-move out of q. Throughout the

paper we assume all s-FAs are deterministic and complete, since determinization

and completion are always possible [8]. An example s-FA is M11 in Figure 2.

This s-FA has 4 states and it operates over the interval algebra from Example 2.

Given an s-FA M = (A, Q, q

init

, F,�) and a state q 2 Q, we say a word

w = a1a2 . . . ak is accepted at state q if, for 1  i  k, there exist moves qi�1
ai�!

qi such that q0 = q and qk 2 F . We refer to the set of words accepted at

q as the language accepted at q, denoted as Lq(M); the language accepted by

M is L(M) = Lqinit(M). The s-FA M11 in Figure 2 accepts, among others,

words consisting only of numbers accepted by the predicate [0, 51) [ [101,1)
and rejects, among others, the word 51, 25.

3 Learning Algorithm

Here we present our algorithm, ⇤⇤
, for learning symbolic automata. The premise

is that the automaton to be learned, called the target, is hidden in a black box,

so knowledge of it comes from some oracle that admits two kinds of queries:

membership queries that ask whether a word is in the language of the target,

and equivalence queries that ask whether a conjectured automaton is equivalent

to the target—if not, a counterexample is provided. ⇤⇤
, which builds upon L

⇤
[3],

maintains an observation table that comprises its knowledge about the target.

The observation table is used to build the intermediary guesses of the target

automaton and, eventually, the final automaton. It is assumed that the learner

knows both the alphabet and the Boolean algebra in question.

3.1 Observation Table

The observation table consists of rows of prefixes and columns of suffixes. Each

entry determines whether the target automaton accepts the word formed by

concatenating the prefix and suffix. Intuitively, prefixes provide knowledge about

words that lead to states, and suffixes help differentiate those states.
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Definition 2 (Observation Table). An observation table T for an s-FA M

is a tuple (⌃, S,R,E, f) where ⌃ is a potentially infinite set called the alphabet;

S,R,E ⇢ ⌃

⇤
are finite subsets of words: S is called the set of prefixes, R is

called the boundary, and E is called the set of suffixes; f : (S [R) ·E ! {0, 1}
is a classification function

1

such that for a word w · e 2 (S [R) ·E, f(w · e) = 1
if w · e 2 L(M), and f(w · e) = 0 if w · e 62 L(M).2 Additionally, ( i) S and R

are disjoint, ( ii) S [R is prefix-closed and ✏ 2 S, ( iii) for all s 2 S, there exists

a character a 2 ⌃ such that s · a 2 R, and ( iv) ✏ 2 E.

Table T1 in Figure 2 is an example observation table: The rows begin with

elements of S [ R, where the elements in S are shown above the horizontal

divider and the elements in R below, and the columns begin with elements of E.

The observation table induces the construction of an automaton. For intu-

ition, each s 2 S corresponds to a state q such that s is a string of moves

from q

init

to q. The boundary R gives information about the transitions between

states. The states are differentiated by the strings in E and the classification

function f , as if there exist s1, s2 2 S and e 2 E such that f(s1 · e) 6= f(s2 · e),
then s1 and s2 behave differently and must lead to different states. We use the

notation row(w) for w 2 S[R to denote the vector indexed by e 2 E of f(w ·e).
⇤⇤

manipulates the observation table and eventually conjectures an s-FA.

For this to happen, the table must first satisfy certain properties—we call such a

table cohesive—that are established through membership queries to the oracle.

The cohesive observation table is used to construct an intermediary automaton

that is ultimately used to produce a conjectured s-FA. An observation table is

closed if for each r 2 R there exists s 2 S such that row(s) = row(r); in other

words, each element in the boundary corresponds to a state. An observation

table is reduced if for all s1, s2 2 S, row(s1) 6= row(s2), meaning each state is

uniquely characterized by f and E. An observation table is consistent if for all

w1, w2 2 S [R, if a 2 ⌃⇤
and w1 ·a,w2 ·a 2 S [R and row(w1) = row(w2), then

row(w1 · a) = row(w2 · a). A table being consistent means that if the words w1

and w2 are equivalent according to f and E, then w1 · a and w2 · a ought to be

equivalent as well, and thus there is no evidence to the contrary.

3

An observation

table is evidence-closed if for all e 2 E and s 2 S, s · e 2 S [R. An observation

table is cohesive if it is closed, reduced, consistent, and evidence-closed.

Consider, for example, the observation tables in Figure 2. T2 is not closed,

since row(51) = � and there is no s 2 S with row(s) = �. Table T5 is not

consistent because row(51) = � = row(51, 0), but row(51 · 0) = � 6= + =
row(51, 0 · 0). Table T11 is closed, reduced, consistent, and evidence-closed.

If an observation table is cohesive, then it admits the construction of an

evidence automaton that classifies words w 2 ⌃⇤
equivalently to the observation

table’s classification function f .

1
We also use {�,+} to denote the range of f .

2
We use · to denote both the concatenation of strings and its lifting to sets of strings,

as is standard.

3
We use a 2 ⌃⇤

for the definition of consistent, but since the table is prefix-closed by

definition, it is equivalent to consider only single-characters a 2 ⌃.
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Definition 3 (Evidence Automaton). An evidence automaton is a tuple

(⌃, Q, q

init

, F,�) where ⌃ is a set; Q is a finite set of states; q

init

2 Q is the

initial state; F ✓ Q is the set of final states; � ✓ Q⇥⌃ ⇥Q is the transition

relation.

A move ⇢ = (q1, a, q2), also denoted q1
a�! q2, is a transition from q1 to q2 using

the character a. A word w = a1a2 . . . ak is accepted at state q if for 1  i  k there

exist moves qi�1
ai�! qi such that q0 = q and qk 2 F . Conversely, if that qk 62 F ,

then w is not accepted at q. If there is no path through the automaton for w,

then the acceptance is undefined. An evidence automaton differs from an s-FA in

that transitions carry characters in ⌃ instead of predicates in a Boolean algebra

over the domain ⌃. Additionally, the evidence automaton can be deliberately

sparse: it is not complete, and we avoid the notion that a state q does not accept

a character a if there is no q

0
such that (q, a, q0) 2 �—as stated above, such a

case simply indicates the behavior of a at q is undefined.

Given a cohesive observation table T = (⌃, S,R,E, f), we build an evidence

automaton A = (⌃, Q, q

init

, F,�) as follows: for each s 2 S, we introduce a state

qs 2 Q. q

init

is assigned to q✏. The final state set F contains all qs such that s 2 S

and f(s) = 1. Since the observation table is closed and reduced, there exists a

function g : S [ R ! S such that g(w) = s if and only if row(w) = row(s).
This function allows us to define the transition relation of A: if w · a 2 S [ R

for w 2 ⌃⇤
and a 2 ⌃, then (qg(w), a, qg(w·a)) 2 �. In Figure 2, the automaton

Me
1 (resp Me

11) is the evidence automaton corresponding to cohesive table T1

(resp. T11).

Lemma 1 (Evidence compatibility). Given a cohesive observation table T =
(⌃, S,R,E, f), if M

evid

= (⌃, Q, q

init

, F,�) is the evidence automaton construc-

tion of T , then for all w · e 2 (S [R) ·E, if f(w · e) = 1 then M

evid

accepts w · e,
and if f(w · e) = 0 then M

evid

does not accept w · e.

3.2 Separating Predicates

Given an evidence automaton with an alphabet ⌃, we require two pieces to

build an s-FA: (i) a Boolean algebra A with DA = ⌃, and (ii) a partitioning

function P for A, which we define below. This latter component, the partitioning

function, is the key insight to ⇤⇤
’s generalization of L

⇤
.

Definition 4 (Partitioning function). A partitioning function for a Boolean

algebra A = (D, , J_K,?,>,_,^,¬) is a function P : (2D)⇤ !  

⇤
that takes

as input a list LD = `1 . . . `k of disjoint sets of elements in D, and returns a

parallel list L = '1 . . .'k of predicates in  such that

–

W
'i2L 

'i = >
– 'i ^ 'j = ? for all 'i,'j 2 L with i 6= j

– for each `i 2 LD corresponding to 'i 2 L , all a 2 `i are such that a 2 J'iK.
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Example 3 (Equality Algebra Separating Predicates). We can construct a parti-

tioning function for the equality algebra: given a list LD = `1 . . . `k we construct

a list L = '1 . . .'k where each 'i has J'iK = `i. We choose a j with max-

imal |`j | and update 'j  'j _
V

1ik ¬'i. In the concrete case of D = Z
and LD = [{2}, {3}, ;, {0, 5}], the partitioning function would produce (after

simplification) L = [�a. a = 2,�a. a = 3,?,�a. a 6= 2 ^ a 6= 3].

At a high level, as long as the s-FA is consistent with the evidence automaton,

it will be consistent with the observation table. The words in the remainder

of ⌃

⇤
—for which the evidence automaton has unspecified classification—can

be assigned to paths in a largely arbitrary manner. The partitioning function

handles generalizing the concrete evidence by creating separating predicates, in

effect specifying the behavior for the remaining words. Ideally, this generalization

allows an automaton to be learned with a relatively small observation table, even

if the alphabet is large—or even infinite.

Given an evidence automaton A = (⌃, Q, q

init

, F,�), a Boolean algebra A
with domain ⌃, and an appropriate partitioning function P , we build an s-FA

M = (A, Q, q

init

, F,�M ) using that Boolean algebra and that exact configuration

of states. All that remains is the construction of the transition relation �M .

For each q 2 Q, we perform the following. We gather all evidence transitions

out of q into a set �q = {(q, a, q0) 2 �} and construct a list L⌃ indexed over the

states qi 2 Q, where each set in L⌃ is `i = {a | (q, a, qi) 2 �q}. We apply the

partitioning function to get a list of separating predicates L A = P (L⌃) which

is also indexed over qi 2 Q, and add (q,'i, qi) to �M for each 'i 2 L A .

Lemma 2 (s-FA evidence compatibility). Given a cohesive observation ta-

ble T = (⌃, S,R,E, F ), if M

evid

= (⌃, Q, q

init

, F,�) is the evidence automaton

construction of T , and M = (A, Q, q

init

, F,�) is produced from M

evid

using a

partitioning function, then for all w · e 2 (S [ R) · E, if f(w · e) = 1 then

w · e 2 L(M), and if f(w · e) = 0 then w · e 62 L(M).

An example observation table, its corresponding evidence automaton, and a

resultant s-FA are shown in the last row of Figure 2.

3.3 Algorithm Description

We now present a description of ⇤⇤
and an example execution. The algorithm

begins by initializing an observation table with S = {✏}, R = {a} for an arbitrary

a 2 ⌃, and E = {✏}. f is initially undefined. The knowledge of the table is grown

using the operations fill, close, evidence-close, and make-consistent.

The operation fill asks a membership query for all w · e 2 (S [ R) · E for

which f is undefined and then adds those results to f ; in this way, it ensures f

is defined over the entire domain of the observation table.

The operation close checks for the existence of an r 2 R such that for all

s 2 S, row(r) 6= row(s). Such an r is moved from R to S, and r · a is added to

R for some arbitrary a 2 ⌃.
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is table

cohesive?

build

evidence

automaton

build s-FA; is

equivalent?

done

initialize

table

yes

no:

membership queries

partitioning

function

yes

no:

add counterexample to table

Fig. 1. Overview of the learning algorithm ⇤⇤
.

The operation evidence-close ensures for all e 2 E and s 2 S that s·e 2 S[R
by adding to R all s · e that are not. It also adds to R any necessary prefixes so

that S [R is prefix-closed.

The operation make-consistent operates as follows: if there exist w1, w2 2
S[R and w1 ·a,w2 ·a 2 S[R for some a 2 ⌃ such that row(w1) = row(w2) but

row(w1 · a) 6= row(w2 · a), then w1 and w2 actually lead to different states; using

the e 2 E such that f(w1 · a · e) 6= f(w2 · a · e), it is clear a · e thus differentiates

those states. Accordingly, a · e is added to E. Additionally, we then add ({u2 · b |
u1 · b 2 S [ R} [ {u1 · b | u2 · b 2 S [ R}) \ S to R for all pairs u1, u2 2 S [ R

such that before adding e to E, row(u1) = row(u2), but f(u1 · e) 6= f(u2 · e) (this

includes the pair w1, w2). This operation distributes the old evidence leading out

of the amalgamated state between the newly differentiated states, simplifying the

constructions in Section 4.

Upon receiving a counterexample c 2 ⌃

⇤
from an equivalence query sent

to the oracle, all prefixes of c are added to R (except those already present in

S). There are two cases for a counterexample: one of the predicates in the s-FA

needs refinement, which is facilitated by adding those new words to the table, or

a new state must exist in the automaton, which is handled by make-consistent.

Figure 1 shows an overview of the learning algorithm: after the table is initial-

ized, the operations make-consistent, evidence-close, and close are applied until

the table is cohesive.

4

(Fill is applied throughout whenever a change is made to

the table.) An s-FA M is then conjectured from the table, and an equivalence

query is performed: if M is equivalent to the target automaton, then the algo-

rithm terminates. Otherwise, a counterexample is produced and processed, and

the procedure repeats.

⇤⇤
can be thought of as a lazily-evaluated version of L

⇤
with the additional

generalization step, and therefore it maintains the property of L

⇤
that the learned

automaton has a minimal number of states.

Theorem 1 (⇤⇤ minimality). When ⇤⇤
terminates it returns a minimal s-FA.

4
It is an invariant of the initialization of the table and of the operations applied to it

that the observation table is always reduced.
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T1 ✏
✏ +

0 +

✏

Me
1

0

✏

M1

[0,1)

51 �
===)

T2 ✏
✏ +

0 +

51 -

close

==)
T3 ✏
✏ +

51 -

0 +

51,0 -

✏

Me
3

51

0

51

0

✏

M3
51

[0, 51)

[51,1)

[0,1)

101 +
===)

T4 ✏
✏ +

51 -

0 +

51,0 -

101 +

✏

Me
4

51

0,101

51

0

✏

M4
51

[0, 51) [ [101,1)

[51, 101)

[0,1)

51,0,0 +
=====)

T5 ✏
✏ +

51 -

0 +

51,0 -

101 +

51,0,0 +

make

consistent

======)

T6 ✏ 0

✏ + +

51 - -

0 + +

51,0 - +

101 + +

51,0,0 + +

close

==)

T7 ✏ 0

✏ + +

51 - -

51,0 - +

0 + +

101 + +

51,0,0 + +

✏

Me
7

51

51,0

0,101

51

0

0

✏

M7
51

51,0

[0, 51) [ [101,1)

[51, 101)

[0,1)[0,1)

51, 21, 0
�

====)

T8 ✏ 0

✏ + +

51 - -

51,0 - +

0 + +

101 + +

51,0,0 + +

51,21 - -

51,21,0 - -

mk

cons.

===)

T9 ✏ 0 0,0

✏ + + +

51 - - +

51,0 - + +

0 + + +

101 + + +

51,0,0 + + +

51,21 - - -

51,21,0 - - -

0,0 + + +

51,0,0,0 + + +

close

==)

T10 ✏ 0 0,0

✏ + + +

51 - - +

51,0 - + +

51,21 - - -

0 + + +

101 + + +

51,0,0 + + +

51,21,0 - - -

0,0 + + +

51,0,0,0 + + +

51,21,0,0 - - -

✏

Me
10

51

51,0 51,21

0,101

51

0 21

0

0

✏

M10
51

51,0 51,21

[0, 51) [ [101,1)

[51, 101)

[0, 21) [21,1)[0,1)

[0,1)

51,0,21 �
======)

T11 ✏ 0 0,0

✏ + + +

51 - - +

51,0 - + +

51,21 - - -

0 + + +

101 + + +

51,0,0 + + +

51,21,0 - - -

0,0 + + +

51,0,0,0 + + +

51,21,0,0 - - -

51,0,21 - - -

✏

Me
11

51

51,0 51,21

0,101

51

0 21

0

21

0

✏

M11
51

51,0 51,21

[0, 51) [ [101,1)

[51, 101)

[0, 21) [21,1)[0, 21)

[21,1)
[0,1)

Fig. 2. An example run of the ⇤⇤
algorithm.
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3.4 Worked Example

Suppose we invoke ⇤⇤
to learn the automaton over non-negative integers that

accepts all words except those that contain a number between 51 and 100 that

is not immediately followed by two numbers between 0 and 20.

The Boolean algebra we use is the union of left-closed right-open inter-

vals. We fix a partitioning function P that assumes that if a 2 `, b 2 `

0
, and

there are no c in the input sets such that a < c < b, then the whole interval

[a, b) behaves equivalently to a. For example, P ({0}, {10}) = [0, 10), [10,1) and

P ({0, 20}, {10}) = [0, 10) [ [20,1), [10,1).
The trace of the algorithm is illustrated in Figure 2. ⇤⇤

begins by initializing

an observation table so that S = {✏}, R = {0} (the 0 is an arbitrary character

from ⌃ and is used purely so that the table contains ✏·a for some a), and E = {✏}.
The appropriate membership queries are made to the oracle, resulting in the

table T1. T1 is cohesive, so it is used to construct the evidence automaton Me
1,

and by calling the partitioning function P on the outgoing transitions of each

state in Me
1—in this case just P ({0}) = [0,1)—the s-FA M1 is conjectured. The

oracle is given M1 as an equivalence query, and it returns the single-character

word 51 as a counterexample. 51 is added to R in the observation table, as would

all of its prefixes if it were a word of length greater than one, and a membership

query is asked for 51 · ✏, resulting in table T2.

T2 is not closed, since row(51) = � and there is no s 2 S with row(s) = �.

Accordingly, 51 represents a path to a new state, so it is moved from S to R,

and a continuation 51, 0 is added to R. This produces table T3, which is now

cohesive and thus admits the construction of the evidence automaton Me
3 and

ultimately the s-FA M3 through the use of the partitioning function: for example,

for the outgoing transitions of the initial state, P ({0}, {51}) = [0, 51), [51,1).
An equivalence query sent to the oracle returns the counterexample of 101.

Adding 101 to R results in the cohesive table T4 and the s-FA M4, and

the oracle provides the counterexample 51, 0, 0. 51, 0, 0 is added to R (all of its

prefixes are already present in S [ R), resulting in the table T5 which is not

consistent: observe that row(51) = � = row(51, 0), but row(51 · 0) = � 6= + =
row(51, 0·0). This means that 51 and 51, 0 actually lead to different states, which

will be addressed in two stages. First, following the rule make-consistent, since

f(51 · 0 · ✏) 6= f(51, 0 · 0 · ✏), we add 0 · ✏ to E to distinguish the states led to

by 51 and 51, 0, which produces table T6. Applying close to T6 results in T7,

which is then cohesive (we added an element to E, which would normally require

applying evidence-close, but it happens to be that T7 is already evidence-closed)

and produces an s-FA M7. The counterexample 51, 21, 0 requires adding it as

well as the prefix 51, 21 to R, producing table T8.

T8 is also inconsistent, since row(51) = �,� = row(51, 21) but row(51 · 0) =
�,+ 6= �,� = row(51, 21 · 0). Since f(51 · 0 · 0) 6= f(51, 21 · 0 · 0), we add

0 · 0 to E to distinguish 51 from 51, 21, and evidence-close the table to get T9.

Closing and evidence-closing this table results in T10, the conjecture M10, the

counterexample 51, 0, 21, the table T11, and finally the automaton M11 which

passes the equivalence query.
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4 Learnability and its Properties

Whether an s-FA can be learned and, if so, the complexity of learning that

s-FA, depends on a more fundamental property concerning the learnability of

the underlying Boolean algebra. In ⇤⇤
, this notion of learnability determines

the complexity of the algorithm. We first provide a definition for an algebra’s

learnability with respect to the inputs given to a partitioning function and then

connect these inputs to the queries given to the oracle during the learning algo-

rithm.

4.1 Learnability of a Boolean Algebra

Fix a partitioning function P over a Boolean algebra A. Let C denote a concept

class for which each concept c 2 C is a finite partition of DA using predicates in

 A, and let G denote the set of generators which, informally, provide a sequence

of counterexamples—elements in DA—to update the sets given to P . We analyze

how many times a generator g must make an update before P learns a desired

partition. A generator g 2 G can be thought of as a function that takes as

input a tuple (L, c
guess

, c

target

)—where L is the list of subsets of DA given as

input to P , c

guess

2 C is a partition of DA consistent with L, and c

target

2
C is the target partition—and outputs a new list L

0
of DA-subsets. We say

g provides sets to P to refer to the iterative process in which L0 = [;] and

Li+1 = g(Li, P (Li), ctarget). Intuitively, a generator iteratively updates a list of

sets to be given to a partitioning function so that the output of that function

approaches the target partition.

Additionally, the generators are subject to the following restrictions that

ensure a sense of monotonicity: (i) the output L

0
is greater than the input L in

the sense that 8a 2 DA[(9` 2 L. a 2 `)! (9`0 2 L

0
. a 2 `0)] (a character present

in the input will always be present in future iterations); (ii) if a1 2 `i 2 L and

a2 2 `j 2 L and i 6= j, then it cannot be that there is some `

0 2 L

0
and both

a1 2 `0 and a2 2 `0 (if the generator says two elements belong to different sets

in a partition, that must be true for all future iterations); and (iii) either the

number of sets in L

0
is larger than the number of sets in L, or at least one

a 2 DA that was not present in any ` 2 L is present in some `

0 2 L

0
Also, the

inputs to the generator are subject to a notion of consistency: if a1 2 `i 2 L and

a2 2 `j 2 L such that i 6= j, then there is no ' 2 c

target

such that {a1, a2} ✓ J'K.
This definition of a generator exactly captures the high-level process of updat-

ing the observation table in our algorithm via queries to the oracle and projecting

those changes onto the individual lists of sets that are given to the partitioning

function for the creation of the conjectured s-FA. For example, in Figure 2, the

evidence for the outgoing transitions of the ✏-state is provided by a generator

such that L1 = [{0}], L2 = [{0}, {51}], and L3 = [{0, 101}, {51}]. Below we will

formalize a notion of learnability with respect to these generators, and it will

thus bear a close correspondence to the complexity of learning an s-FA.

Definition 5 (sg-learnability). Given a Boolean algebra A, a partitioning

function P , and a generator g 2 G, we say the pair (A, P ) is sg-learnable if
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there exists an implicit function sg : C ! N such that P needs as input a list

of sets, provided by g, with total size at most sg(c) to discover a target partition

c 2 C. Furthermore, we say A itself is sg-learnable if there exists a partitioning

function P such that (A, P ) is sg-learnable.

We also classify A as belonging to a learning class that depends on these sg

functions—but first we need an auxiliary notion of the size of a partition.

Definition 6 (DNF-Size of a partition). Let C be the set of partitions of A.

Each c 2 C is a list '1, . . . ,'n: we can expand each 'i to a minimal disjunctive-

normal-form formula

W
j  i,j such that c

0 =  1,1, . . . , 1,m1 , . . . , n,1, . . . , n,mn

is a partition of A that is at least as fine as c. We say the DNF-size of c is the

length of the list of such a minimal c

0
.

Example 4. The partition {x < 5 _ x > 10, 5  x ^ x  10} has DNF-size 3.

Definition 7 (Learning Class). For a fixed Boolean algebra A if there exists

a g 2 G such that A is sg-learnable, then

– if sg is a constant function, i.e. 9k8c. sg(c) = k, we say A 2 C9
const

– if sg is a function only of the DNF-size of c, we say A 2 C9
size

– if sg is otherwise unconstrained, we say A 2 C9
finite

Additionally, for some fixed partitioning function P , if for all g 2 G, (A, P )
is sg-learnable, then

– if each sg is a constant function, we say A 2 C8
const

– if each sg is a function only of the DNF-size of c, we say A 2 C8
size

– if each sg is otherwise unconstrained, we say A 2 C8
finite

C8
const

✓ C8
size

✓ C8
finite✓ ✓ ✓

C9
const

✓ C9
size

✓ C9
finite

Fig. 3. Learning classes.

Observe that learning classes are partially-

ordered by the subset relation shown in Figure 3.

This categorization is convenient for reasoning

about different instantiations of domains and or-

acles. For example: (i) When A 2 C8
const

, learning

a partition over DA is equivalent to the machine-

learning notion of a mistake-bound [12]. (ii) The

equality algebra for any finite alphabet is in C8
const

. (iii) The interval algebra

over the integers or rationals is in C9
size

; if the oracle provides lexicographically

minimal counterexamples, the number of times the partitions must be updated

through the generator is determined by the number of connected regions in

the partition, as illustrated in [13] and as applicable for Figure 2. The integer

case is also in C8
finite

, since after arbitrary counterexamples are found beyond

the least and greatest finite bounds in the partition, m and M respectively, at

most M �m more counterexamples are required. (iv) Using enumeration, linear

rational arithmetic is in C8
finite

.

Since for each state in an s-FA, the set of outgoing transitions forms a parti-

tion of the alphabet, i.e. a concept in C, the number of counterexamples needed
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to learn the entire automaton is related to the sum of sg(c) for each state’s out-

going transitions. Hence, the complexity of learning depends on (i) the choice

of the partitioning function and, potentially, (ii) the quality of counterexamples

provided by the oracle.

Theorem 2 (SFA Learnability). If M is an s-FA over a learnable Boolean

algebra A with n states, then the number of equivalence queries needed to learn

M is bounded above by n

2
P

qi2Q sgi(ci), where sgi is the projection of the oracle

onto learning the partition ci for the outgoing transitions of state qi.

The notion of an algebra’s learning class can have powerful ramifications in

conjuction with the result of Theorem 2. For example, if an s-FA uses a Boolean

algebra contained in C8
finite

, then the use of the appropriate partitioning function

guarantees termination of the learning algorithm, independent of the quality of

counterexamples produced from equivalence queries. Investigating which of the

subset relations in Figure 3 are strict subsets, as well as what (if any) algebras

fall outside of C9
finite

are interesting future problems.

4.2 Composing Learnable Algebras

The definition of learnability described prior has the remarkable property that it

is preserved by some constructions that combine Boolean algebras, such as the

disjoint union and the cartesian product. In these cases, a partitioning function

for the resultant algebra can be constructed by using partitioning functions for

the original algebras as black boxes; This allows us to phrase the learnability of

the constructed algebra in terms of the learnability of the individual algebras.

Definition 8 (Disjoint Union Algebra). Let A1,A2 be boolean algebras.

Their disjoint union algebra A] = (D, , J_K,?,>,_,^,¬), which we denote

A] = A1 ]A2, is constructed as follows:

5

D = DA1 ]DA2  =  A1 ⇥  A2 J('A1 ,'A2)K = J'A1KA1 ] J'A2KA2

? = (?A1 ,?A2) > = (>A1 ,>A2) ¬('A1 ,'A2) = (¬A1'A1 ,¬A2'A2)
('A1 ,'A2) _ ('0

A1
,'

0
A2

) = (('A1 _A1 '
0
A1

), ('A2 _A2 '
0
A2

))
('A1 ,'A2) ^ ('0

A1
,'

0
A2

) = (('A1 ^A1 '
0
A1

), ('A2 ^A2 '
0
A2

))

If A1 has partitioning function P1 and A2 has partitioning function P2, then

we can construct a partitioning function P] for A] = A1]A2: P] takes as input

a list L] of sets where each set `]i ⇢ DA1 ]DA2 . We decompose L] into LD1

and LD2 , two lists of sets of `1i ⇢ DA1 and `2i ⇢ DA2 , respectively: for each

a 2 `]i , if a 2 DA1 , then we add a to `1i , and otherwise if a 2 DA2 , then we

add a to `2i . We obtain L 1 = P1(LD1) and L 2 = P2(LD2). We construct L ]

by taking ']i = ('1i ,'2i) for all i, return L ] , and terminate.

5
In our definition, we use DA1 ]DA2 to denote the disjoint union of sets; rigorously,

when the sets are not already disjoint, this is constructed by taking (DA1 ⇥ {1}) [
(DA2 ⇥ {2}) and lifting all the remaining constructs appropriately.
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The disjoint union is useful since, for example, we can represent arbitrary

intervals over the integers as the disjoint union of (i) intervals over non-negative

integers and (ii) intervals over negative integers. In other words, a partitioning

function suited for a single notion of 1 can be extended to capture two.

Theorem 3 (Disjoint Union Algebra Learnability). Given Boolean al-

gebras A1,A2 with partitioning functions P1, P2, (A1, P1) is sg1-learnable and

(A2, P2) is sg2-learnable if and only if there exists g] such that their disjoint

union algebra (A], P]) is sg]-learnable, where sg](c) = sg1(c1) + sg2(c2) and c1

and c2 are the restrictions of c to DA1 and DA2 , respectively.

Corollary 1. If A1 and A2 are in learning class C, then their disjoint union

A] is also in learning class C.

We present a similar construction for the product of two Boolean algebras.

Definition 9 (Product Algebra). Let A1,A2 be boolean algebras. Their prod-

uct algebra A⇥ = (D, , J_K,?,>,_,^,¬), which we denote A⇥ = A1 ⇥A2, is

constructed as follows:

D = DA1 ⇥DA2  = 2 A1⇥ A2 J{('A1i,'A2i)}iK =
S

i J'A1iKA1 ⇥ J'A2iKA2

? = {(?A1 ,?A2)} > = {(>A1 ,?A2)}
¬{('A1i,'A2i)}i =

V
i{(¬A1'A1i,>A2), (>A1 ,¬A2'A2i)}

{('A1i,'A2i)}i _ {('0
A1j

,'

0
A2j

)}j = {('A1i,'A2i)}i [ {('0
A1j

,'

0
A2j

)}j
{('A1i,'A2i)}i ^ {('0

A1j
,'

0
A2j

)}j = {('A1i ^A1 '
0
A1j

,'A2i ^A2 '
0
A2j

) | 8i, j}

If A1 has partitioning function P1 and A2 has partitioning function P2, then

we can construct a partitioning function P⇥ for A⇥ = A1⇥A2: P⇥ takes as input

a list L⇥ of sets where each set `⇥i ⇢ DA1⇥DA2 . We first take the set D1 = {d1 |
(d1, d2) 2 `⇥i for some `⇥i 2 L⇥}, turn it into a list D

0
1 = {d1,1}, . . . , {d1,n},

and compute a partition L1 = P1(D0
1). Then for each di 2 D1, we construct a

list D2,di where the j-th element is the set {d2 | (di, d2) 2 `⇥j} and compute

a partition L2,di = P2(D2,di). Finally, we initialize the list of predicates to be

returned L ⇥ = '⇥1 , . . . ,'⇥k so that initially each '⇥i = ?. Then for all i

and each (d1, d2) 2 `⇥i , let 'd1 be the predicate in L1 corresponding to {d1} in

D

0
1 and let 'd2 be the predicate in L2,d1 corresponding to the set of D2,d1 that

contains d2; update '⇥i  '⇥i _ ('d1 ,'d2). Return L ⇥ and terminate.

Example 5. Suppose we want to find a partition over (x, y) 2 Z ⇥ Z where

each component uses the interval algebra, and suppose the input sets are L⇥ =
[{(0, 0), (1, 0), (1, 2)}, {(0, 2)}]. Then D

0
1 = [{0}, {1}] and perhaps L1 = P1(D0

1) =
[x  0, x > 0]. Then we have D2,0 = [{0}, {2}] and D2,1 = [{0, 2}, ;]. Perhaps

L2,0 = P2(D2,0) = [y  1, y > 1] and L2,1 = P2(D2,1) = [>,?]. Then (without

simplification) L ⇥ = [(x  0, y  1) _ (x > 0,>) _ (x > 0,>), (x  0, y > 1)]

Theorem 4 (Product Algebra Learnability). Given Boolean algebras A1,A2

with partitioning functions P1, P2 and their product algebra A⇥ with the compos-

ite partitioning function P⇥, let c 2 C⇥ be the target partition over the product
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algebra, let c1 2 C1 be the minterms of the A1-components of c, and let c2 2 C2

be the minterms of the A2-components of c. ( i) If (A1, P1) is sg1-learnable and

(A2, P2) is sg2-learnable, then there exists g⇥ such that (A⇥, P⇥) is sg⇥-learnable

where sg⇥(c) = sg1(c1)sg2(c2). ( ii) If (A⇥, P⇥) is sg⇥-learnable, then there ex-

ist g1, g2 such that (A1, P1) is sg1-learnable and (A2, P2) is sg2-learnable where

sg⇥(c) = sg1(c1) = sg2(c2).

Corollary 2. If A1 and A2 are in learning class C, then their product A⇥ is

also in learning class C.

Since learnability is closed under disjoint union and product, symbolic automata

over non-recursive data types can be learned using partitioning functions for the

component types, as opposed to necessitating specialized partitioning functions.

5 Implementation

We implemented ⇤⇤
in the open-source Java library Symbolic Automata. Our

modular implementation only requires the programmer to provide learnable

Boolean algebras as input to the learner; we have already implemented the equal-

ity and interval algebras as well as the disjoint union and product algebras—

which are implemented as meta-algebras and can be instantiated arbitrarily.

We evaluated our algorithm on the examples presented by Maler and Mens [13],

who proposed two extensions of L

⇤
for learning s-FAs where 1) predicates are

union of intervals in N, or 2) predicates are union of intervals over N⇥N. Their

algorithms assume that the oracle always provides lexicographically minimal

counterexamples, so that every counterexample identifies a boundary in a par-

tition. They evaluate their techniques on two automata: one over the alphabet

N (Ex. 4.1 [13]) and one over the alphabet N⇥ N (Ex. 5.1 [13]).

We implemented a partitioning function equivalent to their characterization

of the interval algebra over N. While, to learn automata over N⇥ N, [13] intro-

duces an ad-hoc separate technique that requires the oracle to always give locally

minimal counterexamples, in our setting, the algebra for pairs can be trivially

implemented as the Cartesian product of the interval algebra over N with itself.

We learn the first automaton using 8 equivalence and 23 membership queries,

while their algorithm only requires 7 and 17, respectively. The former difference

is due to their algorithm adding a different suffix to E than ours, which happens

to discover two new states instead of one and ultimately saves them an equiv-

alence query. The latter is due to a more refined handling of counterexamples

(more in our related work). Similarly, we learn the second automaton using 28

equivalence and 43 membership queries, while their algorithm only requires 18

and 20, respectively. In this case, the discrepancy is amplified because the al-

gorithm in [13] uses a specialized implicit partitioning function that avoids the

quadratic blowup caused by the Cartesian product construction in Theorem 4.

We implemented an analogous specialized partitioning function directly on the

product algebra and were able to learn the same example using 19 equivalence

and 30 membership queries.
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6 Related Work

⇤⇤
builds on L

⇤
[3], for which many extensions have been proposed, the most ad-

vanced one being TTT [11, 1]. While these extensions could be applied to ⇤⇤
to

potentially improve the size of the observation table, the number of membership

queries is dictated by the amount of evidence needed for the partitioning func-

tion to generalize. Our algorithm opens new questions: Can we efficiently store

intermediate predicates computed by the partitioning functions? Can separating

predicates be computed incrementally?

Our paper is the first one to provide: (i) an algorithm for learning symbolic

automata over arbitrary alphabet theories, with a notion of learnability that is

parametric in both the alphabet theory and the oracle (through its projection

onto generators), and (ii) compositionality properties that permit combining

learnable algebras. We detail our comparison against the most relevant works.

Isberner et al. augment L

⇤
with abstractions to learn automata over poten-

tially infinite alphabets [10]. The algorithm creates abstract symbols to gener-

alize sets of characters, and the final automaton operates over these abstract

symbols. Abstractions can cause non-determinism that is resolved using refine-

ment operators. This approach differs from ours in two aspects. First, while the

final output of ⇤⇤
is a symbolic automaton over the target Boolean algebra,

the output in [10] is an automaton operating over a separate abstract alphabet

that is discovered during the learning process and might not necessarily form a

Boolean algebra. Second, our algorithm enjoys well-defined learnability and com-

positionality properties over the input Boolean algebras, while the one in [10]

does not provide any such properties. Maler and Mens [13] instantiate the algo-

rithm proposed in [10] and learn automata over the interval algebra for integers

and pair of integers. As we discussed throughout the paper, their results are

special cases of our formulation. In fact, their specialized algorithm for learning

automata over pairs of integers is a special case of our Cartesian product of two

algebras. Using our technique, we can also drop the assumption that the the

oracle provides lexicographically minimal counterexamples, which simply causes

a change to the sg functions and learnability.

Argyros et al. [5] present an algorithm for learning symbolic automata where

the learnability is parametric with respect to a guardgen method, which is an

equivalent formulation of our partitioning function. Their definition of learnabil-

ity only captures our learning class C8
const

and can therefore only describe Boolean

algebras operating over finite alphabets or with finitely many predicates. Our

work introduces generators, proposes a deeper analysis of the learnability of a

Boolean algebra, and shows how learnable algebras can be composed.

The Sigma

⇤
algorithm [6] is a practical algorithm for learning symbolic trans-

ducers, but it does not have learnability guarantees. Other algorithms can learn

nominal [14] and register automata [7]. In these models, the alphabet is infinite

but not structured (i.e., it does not form a Boolean algebra) and characters at

different positions can be compared using binary relations (typically equality or

simple arithmetic relations). These models are orthogonal to symbolic automata.
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