

dumelang

lotjhani hallo avuxeni hello

ri a vusa

avuxeni

molweni

ri a vusa

sanibonani

molweni

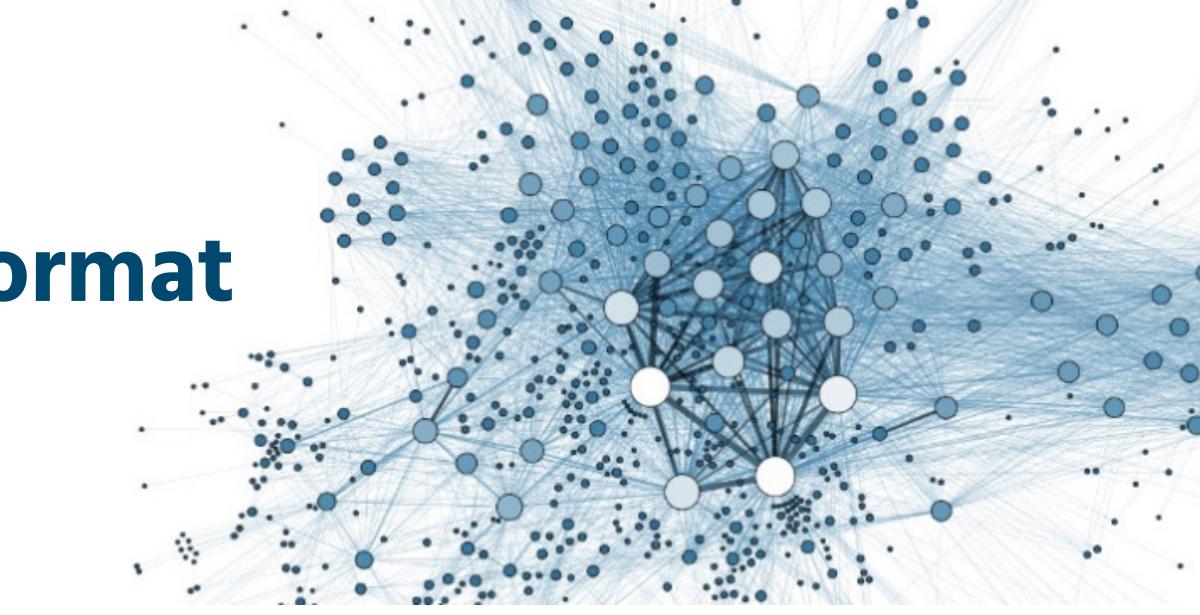
ri a vusa

lotjhani

dumelang

hallo

Agenda and Webinar format David Gouvias Data Scientist

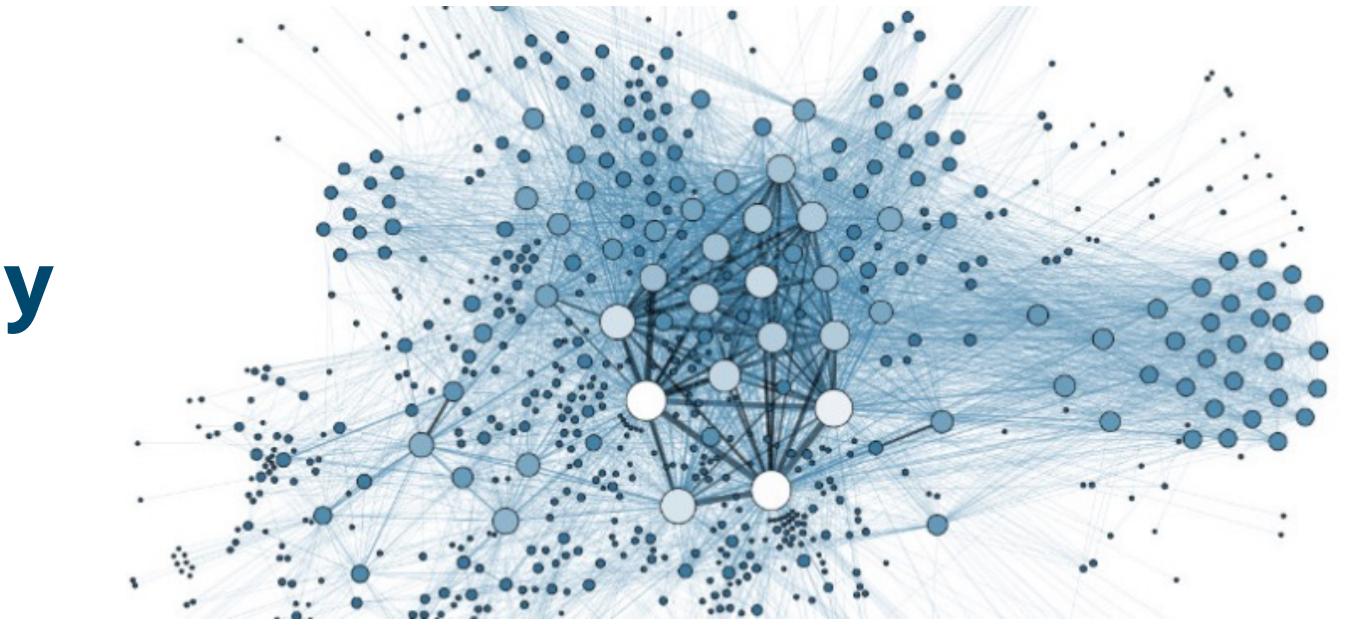


Data Science Hackathon 2021

- Welcome. PW Janse van Rensburg
- Graph Database Journey. Derick Schmidt
- Introduction to Graph Databases. Monika du Toit
- Introduction to AWS and SageMaker. Preshen Goobiah
- Neptune Graph Database and Gremlin (David Gouvias)
- Data Science Graph Algorithms (Ockert Janse Van Rensburg, Dalubuhle Mbune)
- Hackathon Challenge (David Gouvias)
- Data definition and reference Graph Database Design. (David Gouvias)
- Judges, Prizes and final logistics.

Welcome **PW Janse van Rensburg Manager: Data Science - Client Insights**

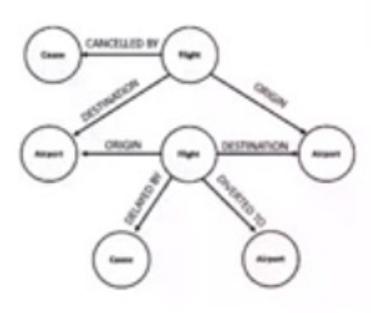
Graph Database Journey Derick Schmidt Manager: Client Data Platform



Introduction to GraphDB and Capitec Data Science Monica Du Toit Data Scientist

Graphs everywhere

Relationships of highest priority



Event Graphs

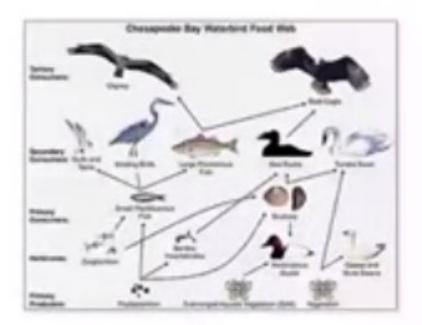


Image credit: Wikipedia

Food Webs

Image credit: Pinterest

Image credit: SalientNetworks

Computer Networks

Disease Pathways

Particle Networks

Image credit: visitlondon.com

Underground Networks

Graphs everywhere

Relationships of highest priority



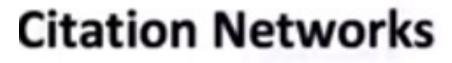
Image credit: Medium

Social Networks

Image credit: Science

Image credit: Missoula Current News

Internet



1

Image credit: Lumen Learning

Economic Networks Communication Networks



Image credit: The Conversation

Networks of Neurons

Relationships of highest priority

Leonard Euler

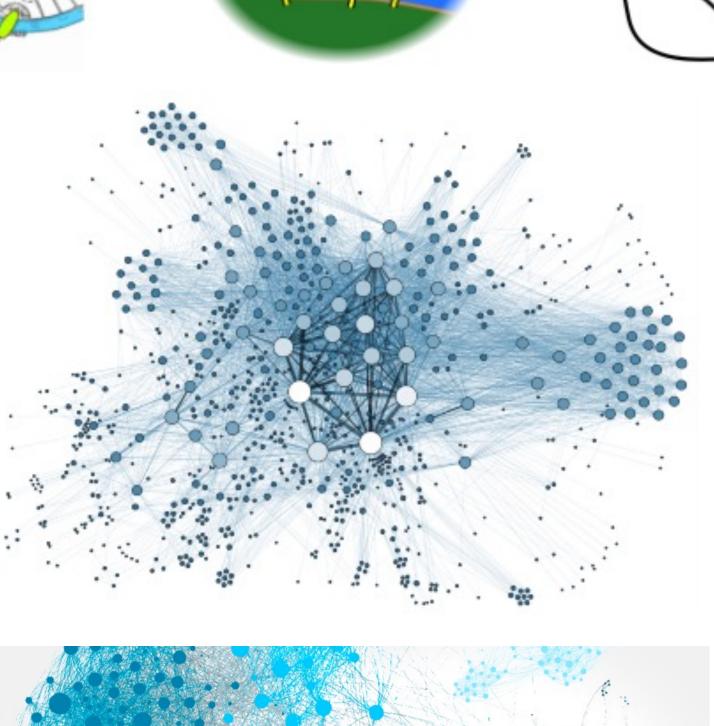
The Seven Bridges of Konigsberg (1736) laid the foundations of graph theory. Euler proved that the problem has no solution.

Eulerian Path = a walk through the city that would cross each bridge/edge only once.

GraphDB are a general language for describing entities with relationships.

Nodes represent entities or other domain components. **Edges** connect two nodes and represent relationships between entities.

Nodes and edges can contain properties that hold namevalue pairs of data.



© Capitec Bank Limited 9

Use cases across the world – node level

50 year old Protein Folding problem

Predict a protein's 3D structure based solely on its amino acid sequence (DeepMind's AlphaFold)

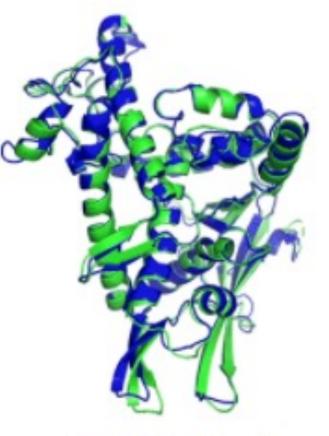
Represent underlying protein as a graph, using graph neural network, predicting new position of the amino acids.

Study living things in new ways, enable quicker and more advanced drug discovery.

"Help to illuminate the function of the thousands of unsolved proteins in the human genome, and make sense of diseasecausing gene variations that differ between people."

NEWS 30 November 2020

'It will change everything': **DeepMind's AI makes gigantic leap** in solving protein structures



T1037 / 6vr4 90.7 GDT (RNA polymerase domain) T1049 / 6y4f 93.3 GDT (adhesin tip)

Experimental result Computational prediction

© Capitec Bank Limited 10

Use cases across the world – edge level

Recommender Systems

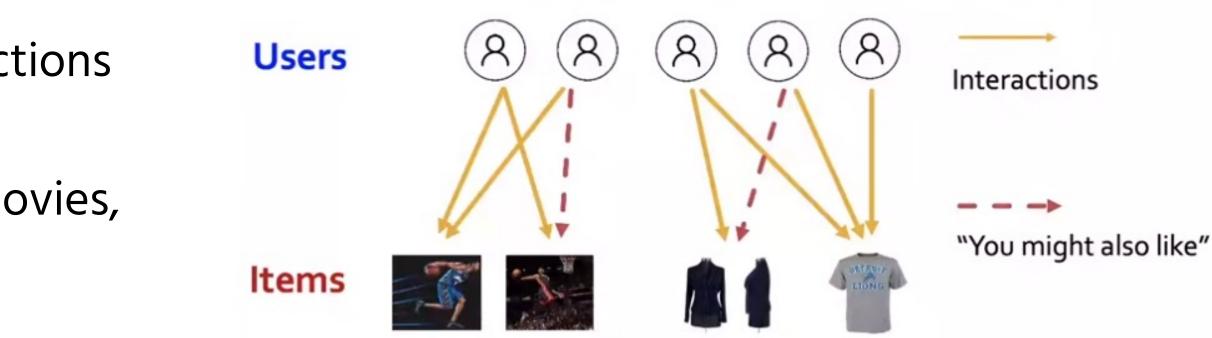
Nodes: users and items; Edges: user-item interactions

Recommend items users might like (watching movies, purchasing products, listening to music, etc)

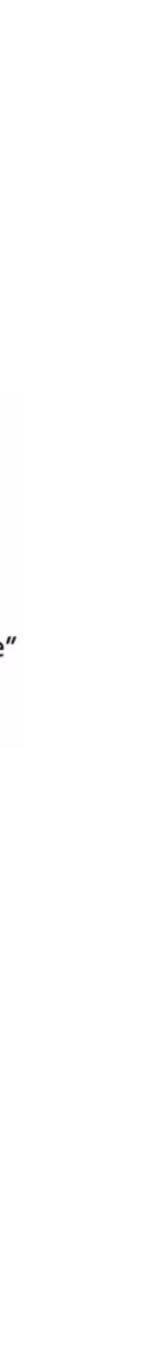
Use graph neural network to predict clients' interests by considering relationships between clients and relationships between clients and their past interests.

"Existing research has shown the efficacy of graph learning methods for recommendation tasks."

Pinterest, LinkedIN, Facebook, Instagram, Alibaba, Netflix. https://eng.uber.com/uber-eats-graph-learning/







Use cases across the world – subgraph-level

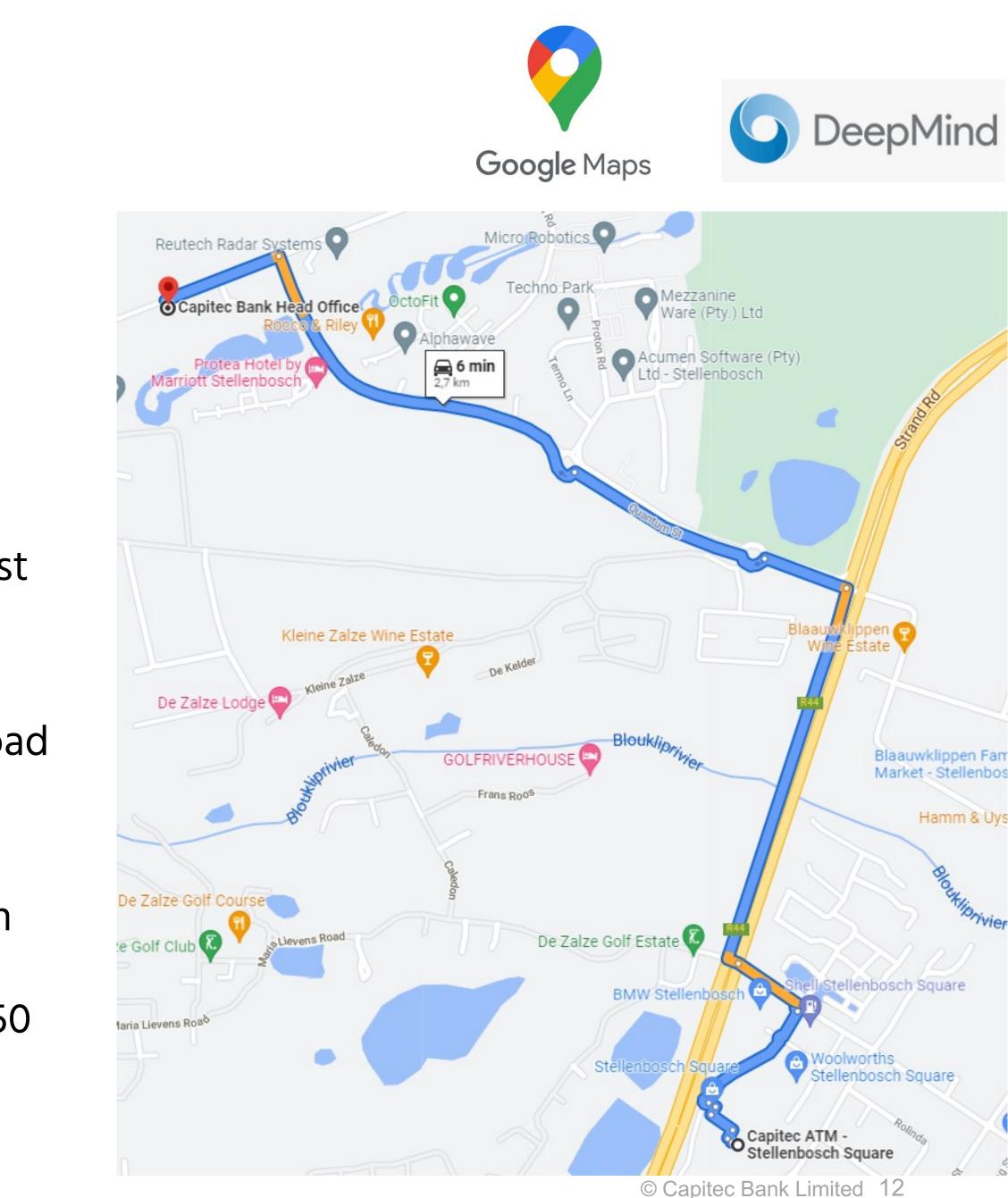
Traffic prediction

Graph Neural Network approach based on collisions, traffic patterns trained and roads quality to find shortest path and predict travel time.

Nodes: road segments; Edges: connectivity between road segments

"Each day more than 1 billion km of road are driven with the app's help. Google says using DeepMind's AI tools have improved the accuracy of ETAs in Maps by up to 50 percent."

https://www.theverge.com/2020/9/3/21419632/how-google-maps-predicts-traffic-eta-ai-machine-learningdeepmind



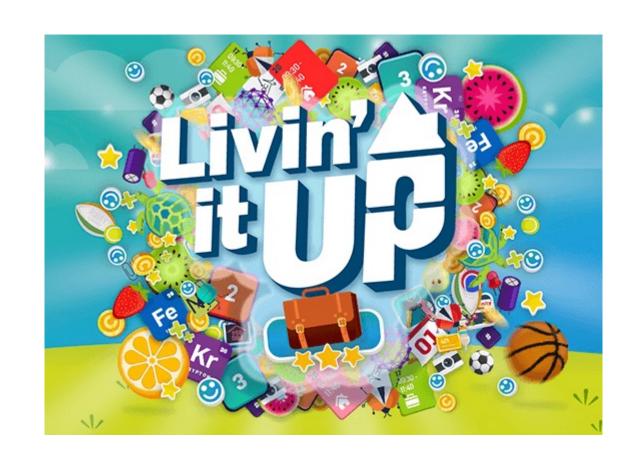
Capitec

20 years old

- 16.8mil clients
- 8.9mil active retail digital banking clients – biggest digital bank in SA
- 623 mil digital transactions last 6m -
- Open GlobalOne account remotely -

We Believe That Banking is About People

New products: Live Better Savings Account; Financial Education; Virtual Card; Scan to Pay; EasyEquities; Remote Credit; Business Bank

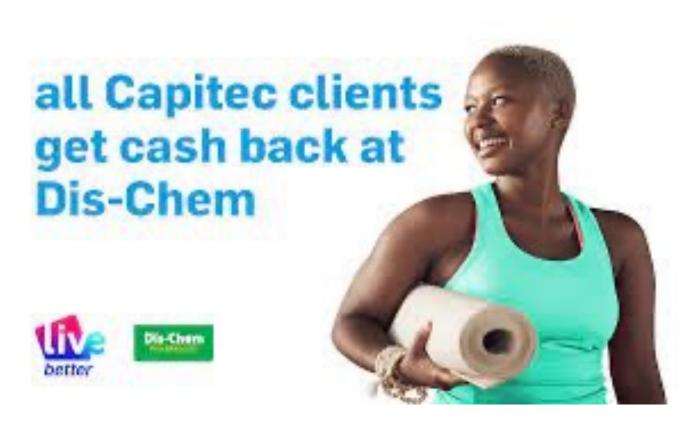


Our Fundamentals:

Simplicity, Affordability, Accessibility, Personalized experience

simplify banking,

live better



Capitec Data Science team, est. 2017

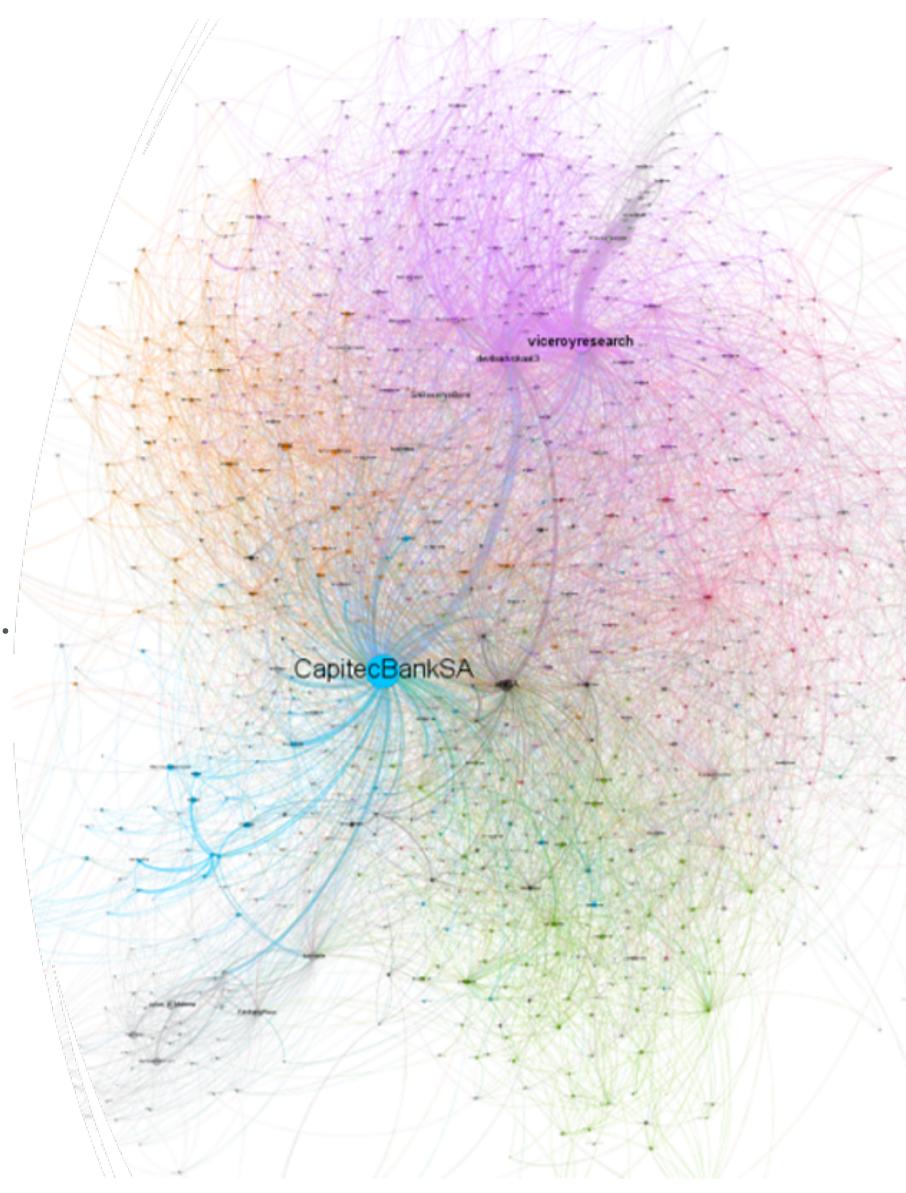
- 1. People matter: Data science will always impact people's lives
- 2. Truth matters: Keep searching
- 3. Knowledge matters: Keep learning
- 4. Individual knowledge is limited: Keep collaborating
- 5. You matter: Respect differences

Innovation / Optimisation

© Capitec Bank Limited 14

Capitec GraphML Use cases

- Identify likely merchant clients and convert to Business 1. Bank clients.
- Suggest potential new clients for existing business clients. 2.
- Identify fraudulent activity on client's accounts. 3.
- Recommend most relevant product based on client's need. 4.
- Discover Capitec client communities from social media 5. data.



thank you any questions?

#SimplifyBanking #LiveBetter

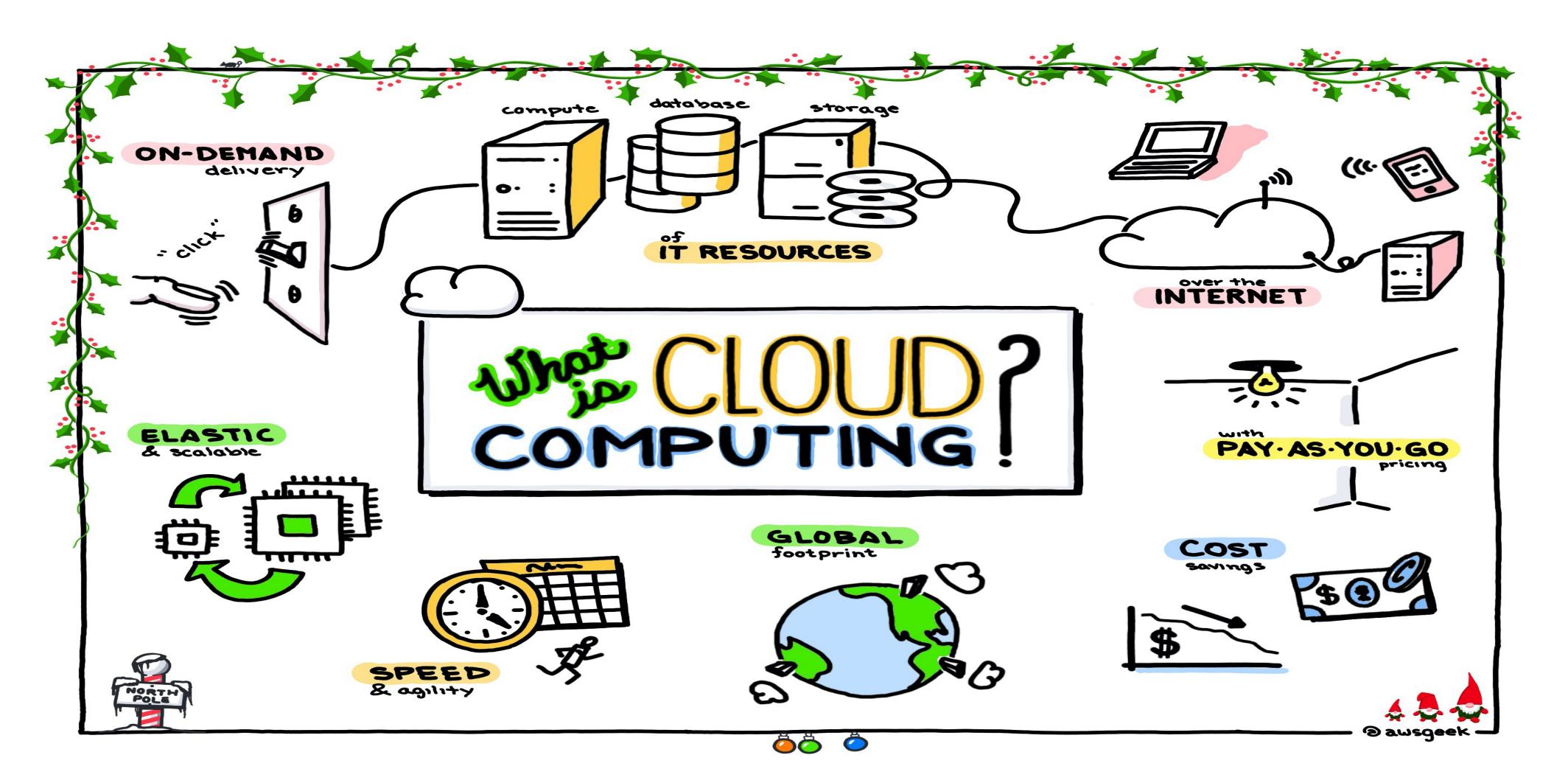
capitecbank.co.za

Capitec Bank Limited is an authorised financial services provider (FSP 46669) and registered credit provider (NCRCP13) Capitec Bank Limited Reg. No.: 1980/003695/06

Cloud Computing and AWS

Preshen Goobiah Machine Learning Engineer

What is Cloud Computing and AWS



AWS Global Infrastructure

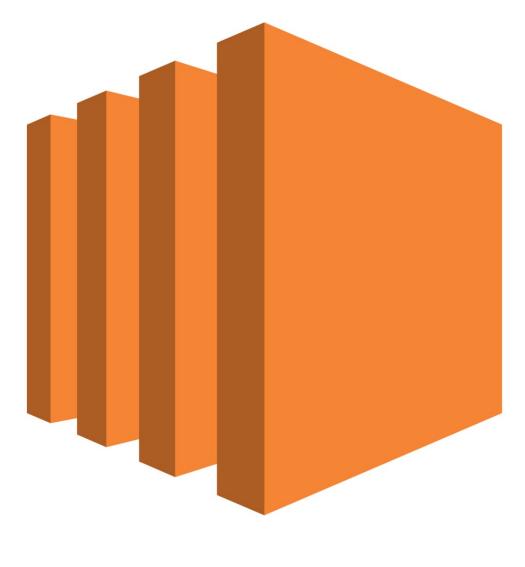
cc by-sa 4.0

AWS Service Landscape

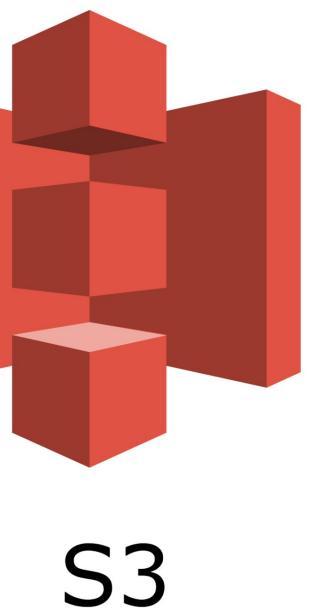
IoT		Game Development
Customer Engagement	Business Applications	Security & Compliance
AR & VR	Application Integration	Machine Learning
Analytics	Media Services	Satellite
Robotics	Blockchain	Mobile
Migration & Transfer	Network & Content Delivery	Developer Tools
Compute	Storage	Databases

© Capitec Bank Limited 20

AWS Core Services



EC2

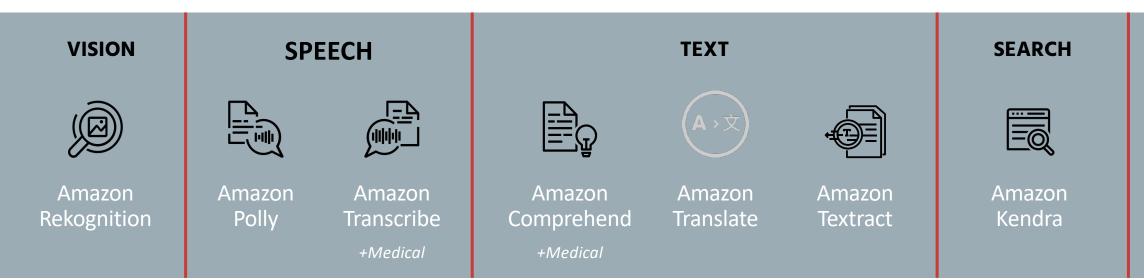


© Capitec Bank Limited 21

The AWS ML stack

Platform vs Application services

AI SERVICES



ML SERVICES

	SageMaker Studio IDE												
Amazon SageMaker	Ground Truth AWS Marketplace for ML		Built-in algorithms	Notebooks	Experiments	Processing	Model training & tuning	Debugger	Autopilot	Model hosting	Model Monitor	Neo or	Augn
ML FRAMEWORKS & INFRASTRUCTURE													
TensorFlow	ن P nxnet	yTorch	GI K Ke	LUON eras		GraphLibrary p Java Library	-	earning Containers	GPUs & CPUs	Elas Infer		nferentia	F

CHATBOTS	PERSONALIZATION	FORECASTING	FRAUD	DEVELOPMENT	CONTACT CEN
کھر ۱۱۱	(B)	<u>a</u>	XÖ	-`(())-	<i>A</i>
Amazon Lex	Amazon Personalize	Amazon Forecast	Amazon Fraud Detector	Amazon CodeGuru	Conta Lens For Amazon

ENTERS

B

act

Connect

Amazon SageMaker features overview

SageMaker **Ground Truth** Fully managed

data labeling

SageMaker Processing SKLearn, Spark, BYO

Inf1/Amazon **Elastic Inference**

High performance at lowest cost

Amazon **Augmented Al**

Add human review of model predictions

SageMaker Neo

Train once. deploy anywhere

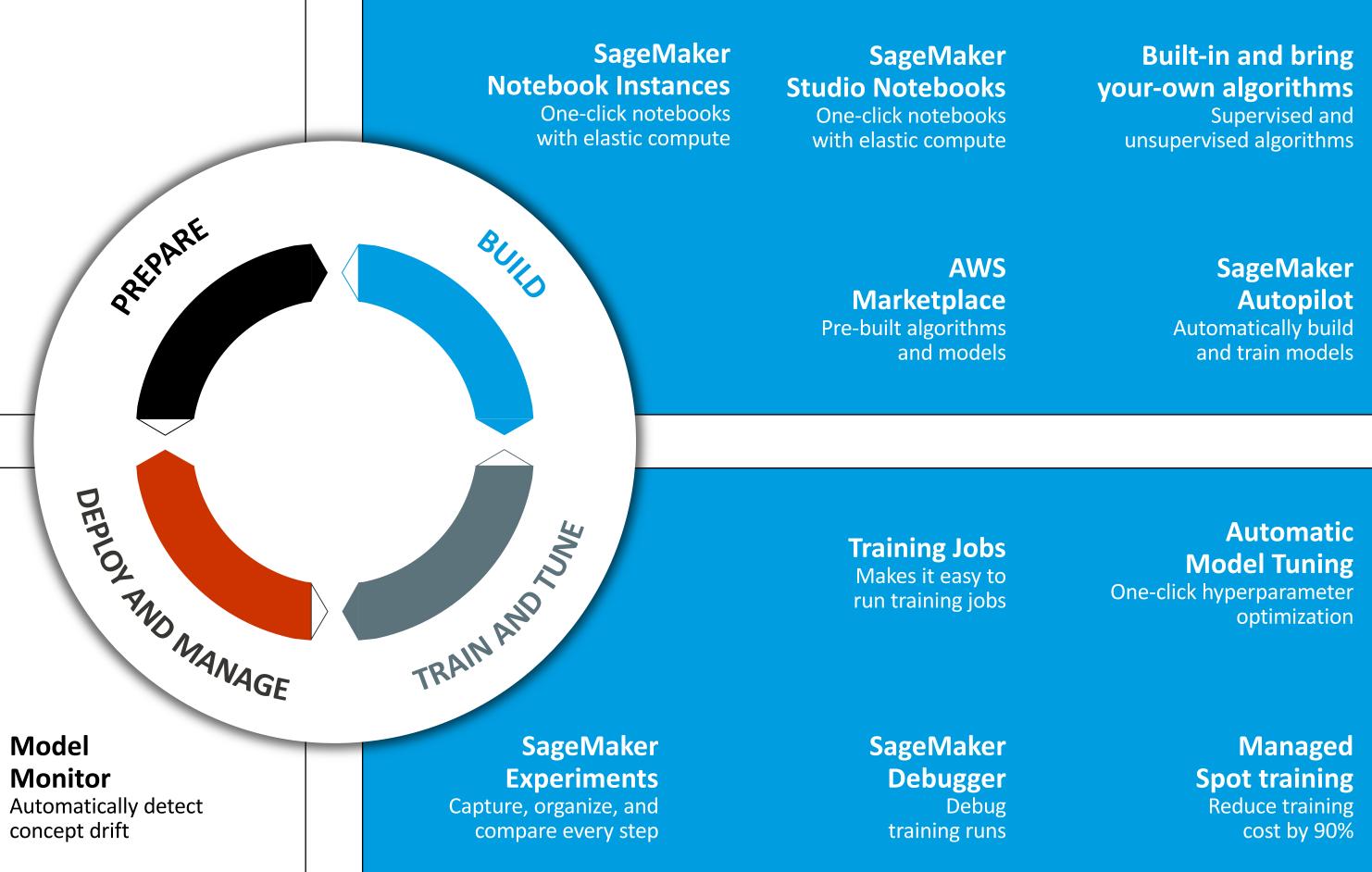
Endpoint Deployment

Supports real-time, batch and multi-model

Model Monitor

Automatically detect concept drift

PREPARE



Notebook Instances

SageMaker Core Components

Training Jobs

Real-time Endpoints

© Capitec Bank Limited 24

SageMaker Notebook Instances

Explore

thank you any questions?

#SimplifyBanking #LiveBetter

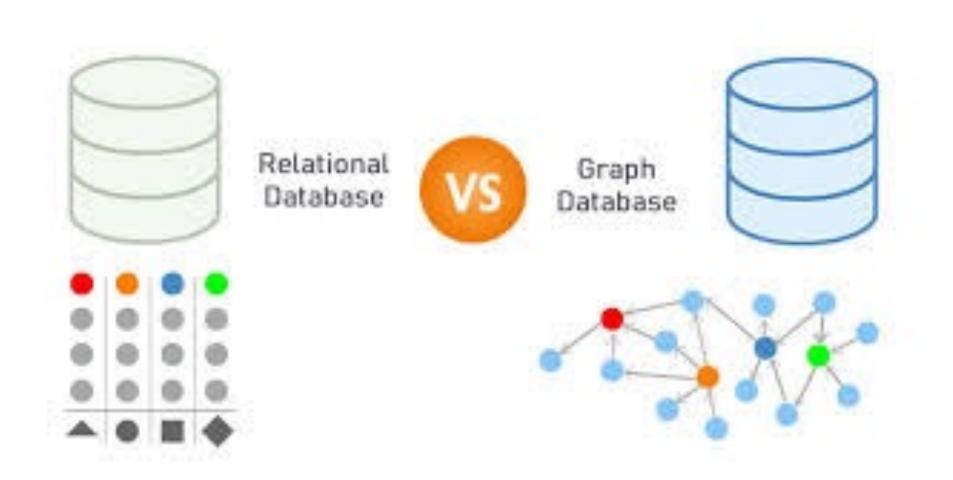
capitecbank.co.za

Capitec Bank Limited is an authorised financial services provider (FSP 46669) and registered credit provider (NCRCP13) Capitec Bank Limited Reg. No.: 1980/003695/06

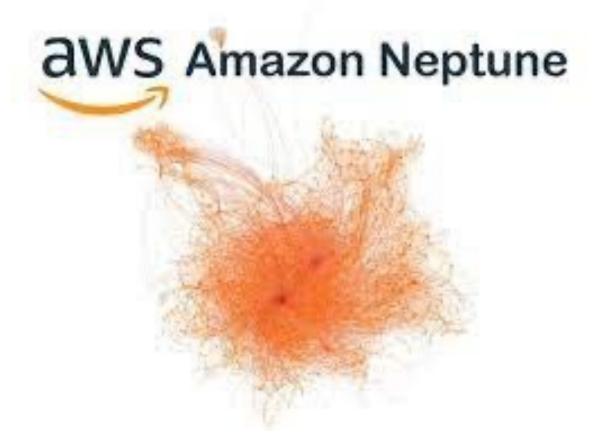
Amazon Neptune and Gremlin David Gouvias Data Scientist

Amazon Neptune

- Purpose-build, high-performance graph database engine
- Optimized for storing billions of relationships
- Querying graphs with milliseconds latency
- Fully-managed (no hardware provisioning, software patching, setup)
- Supports graph model property graph and Resource Description Framework (RDF)
- Supports query languages Apache, TinkerPop, Gremlin and SPARQL

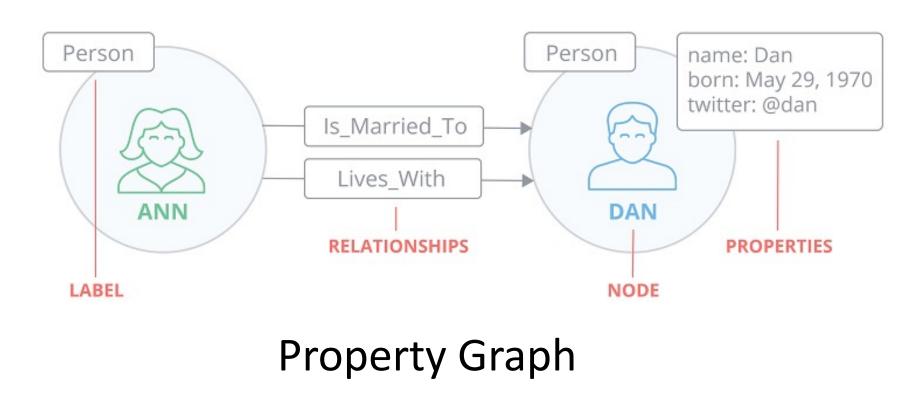


- base engine
- ftware patching, setup) esource Description



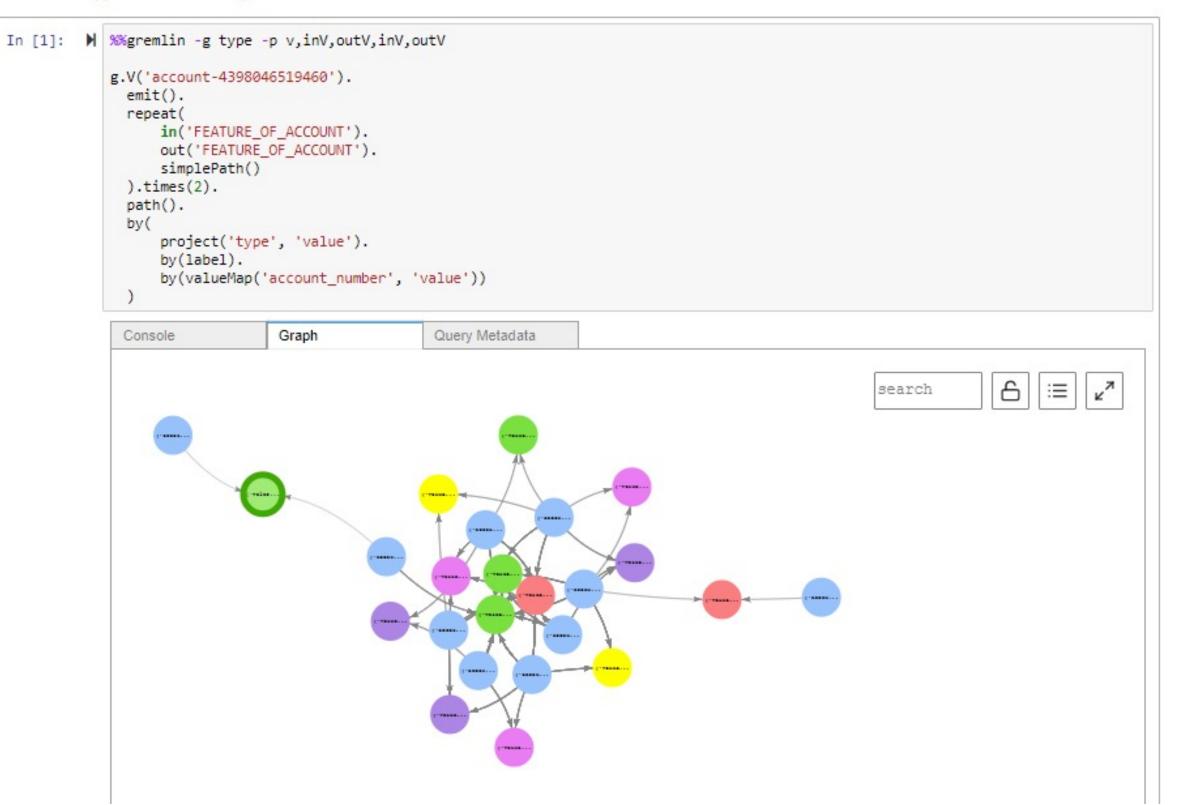
Gremlin - Graph Traversal Language

- Allows one to express complex queries ulletthat are not feasible and efficient in SQL.
- Many business problem solutions can be modeled as graph queries, including fraud typology detection.



Extended fraud ring

We can extend the scope of the previous to find linked accounts two hops from the starting account. The size and complexity of this account network is suggestive of a fraud ring:



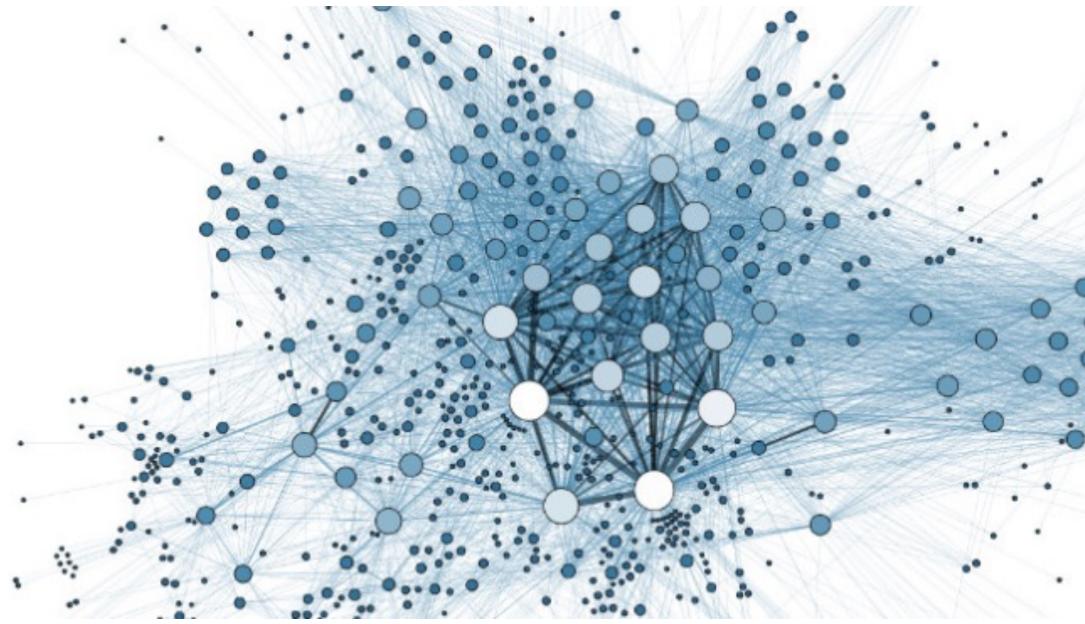
thank you any questions?

#SimplifyBanking #LiveBetter

capitecbank.co.za

Capitec Bank Limited is an authorised financial services provider (FSP 46669) and registered credit provider (NCRCP13) Capitec Bank Limited Reg. No.: 1980/003695/06

Graph Algorithms Ockert Janse Van Rensburg Data Scientist



Graph Algorithms

Extracting value from Graph Databases

Community Detection Detects group clustering or partition options

Centrality (Importance) Determines the importance of distinct nodes in the network

Heuristic Link Prediction

Estimates the likelihood of nodes forming a relationship

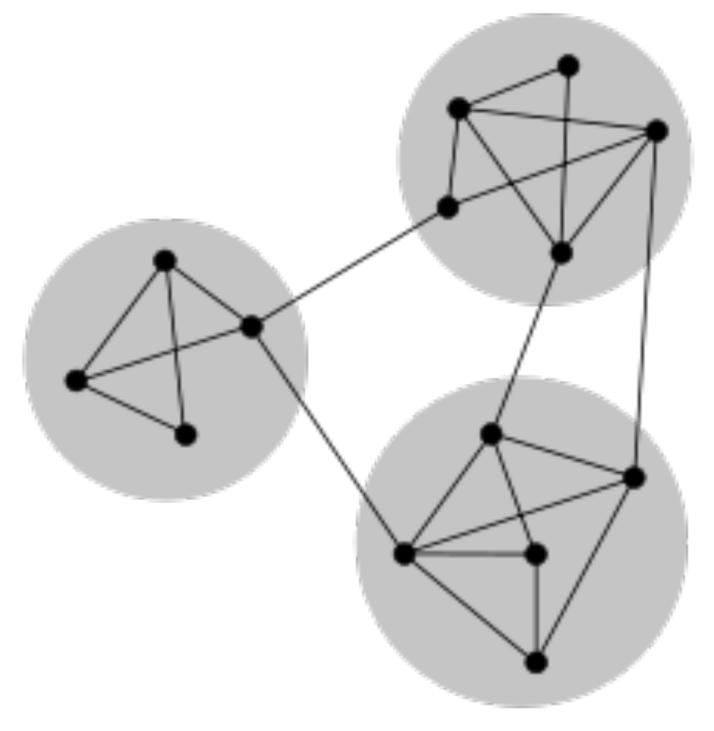
Similarity Evaluates how alike nodes are

Pathfinding & Search Finds optimal paths; evaluates route availability, quality

Node Embedding Learns graph topology to reduce dimensionality for machine learning

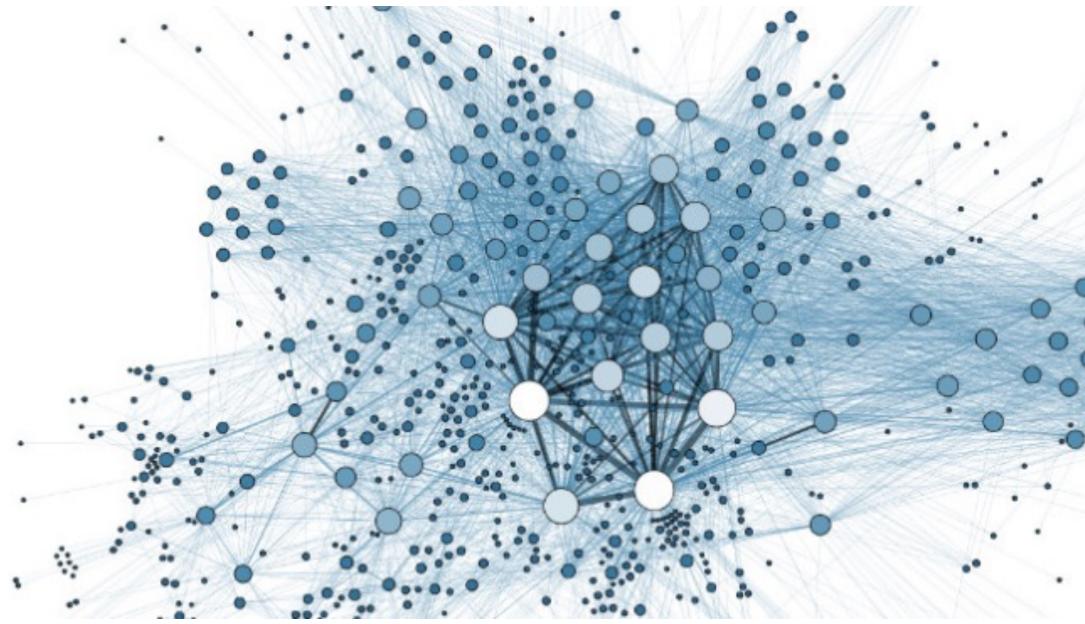
Community Detection Finding meaningful groups in complex phenomena

- What is a community?
 - group, cluster, cohesive subgroup, module
- Break up the network into **modular groups** where the edges within group are of higher density, than those of the other groups
- Multiple types of community detection algorithms (overlapping vs non-overlapping)
- The Louvain method commonly used due to its scaling properties
- More information on installing this method will be made available in the info pack to be distributed



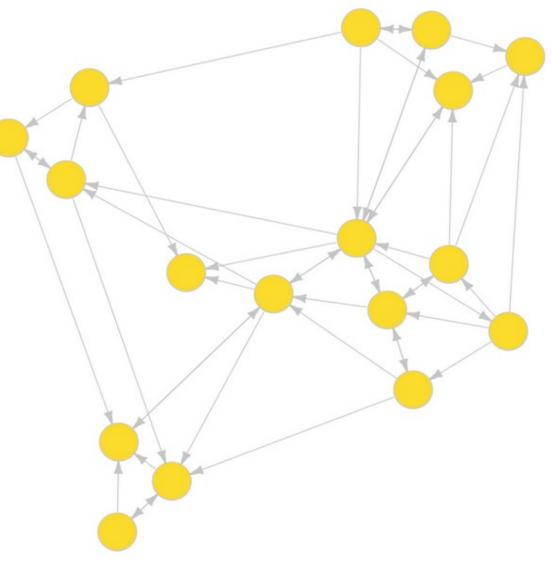
Non-overlapping communities. Communities represented by the circles.

Graph Algorithms Dalubuhle Mbune Data Scientist



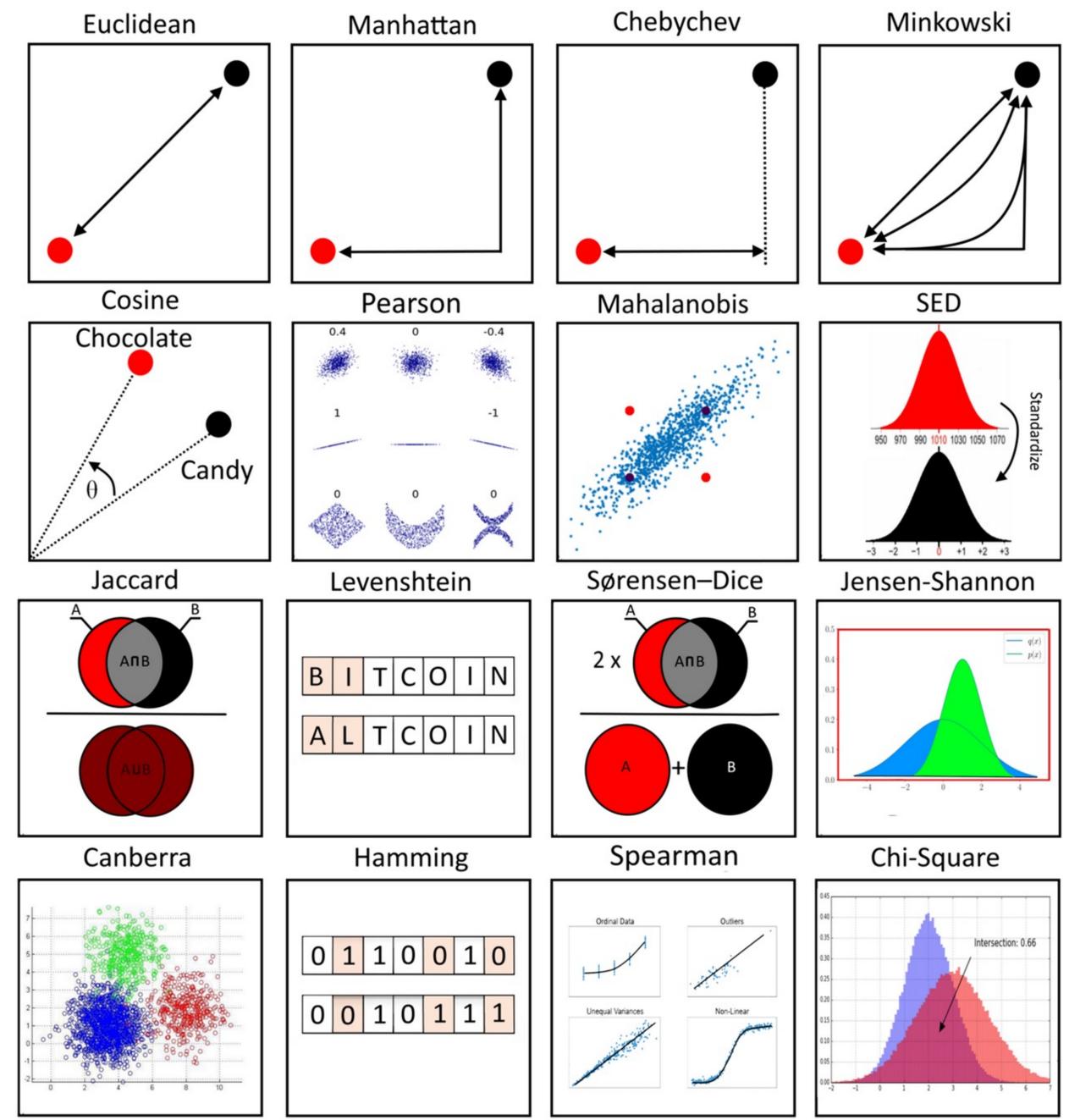
Graph Algorithms Similarity Algorithms

- The similarity measure is a way of measuring how nodes are related or close to each other.
- Calculations are performed on vector representations of objects. Each object must • first be converted to a numeric vector.
- Similarity/distance is calculated between a single pair of nodes at a time.
- There are numerous similarity algorithms ٠
- Regardless of the algorithm, feature selection will have a huge impact on your results.



Similarity Algorithms

- Distance measures are the fundamental principle for classification
- The choice of distance measure plays a crucial role in the similarity algorithm's performance



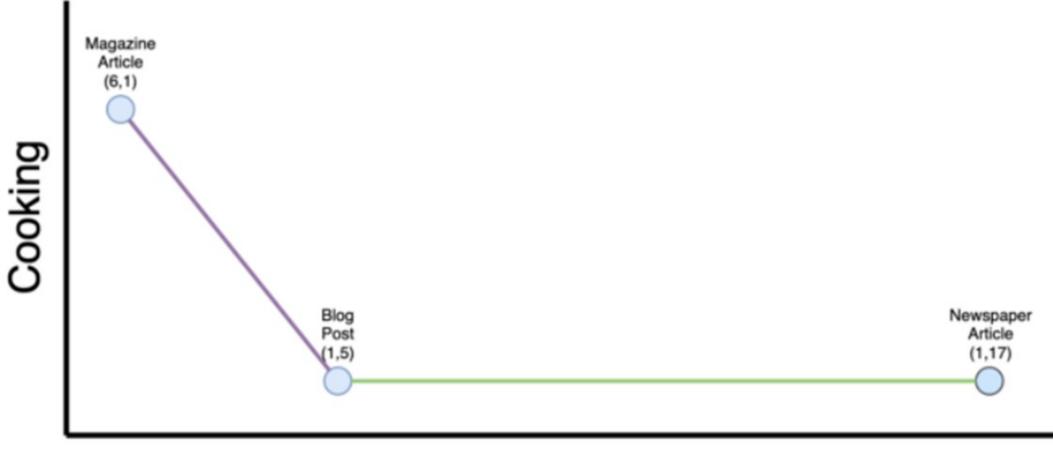
[©] Capitec Bank Limited 36

EXAMPLE

Euclidean and Cosine Similarity for Document Comparison

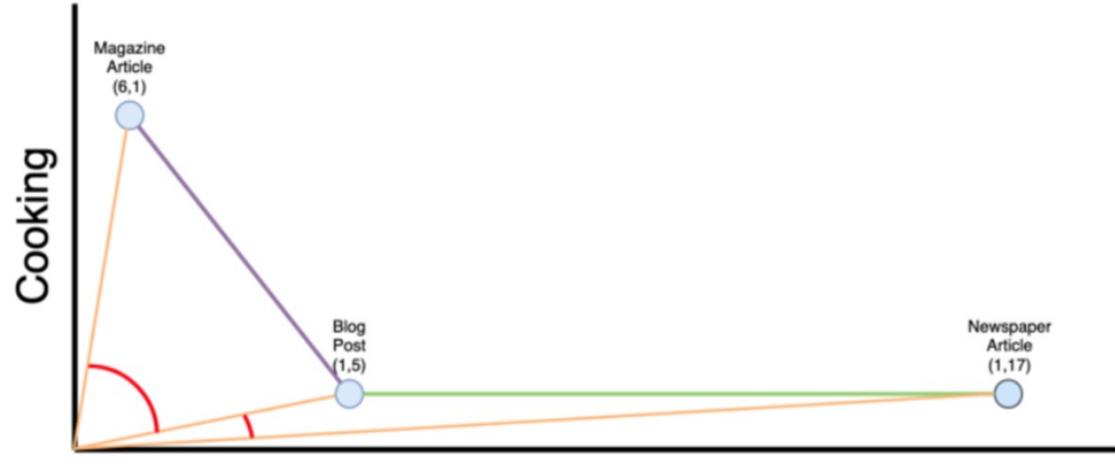
• on a Blog Post, Newspaper Article, and Margazine Article.

Euclidean Similarity



Restaurant

Suppose we want to compare how frequent the words 'Restaurant' and 'Cooking' (Features) appear



Restaurant

•In the above Example, we compare 3 documents based on how many times they contain the words "cooking" and "restaurant".

•Euclidean distance tells us the blog and magazine are more similar than the blog and newspaper. But that's misleading.

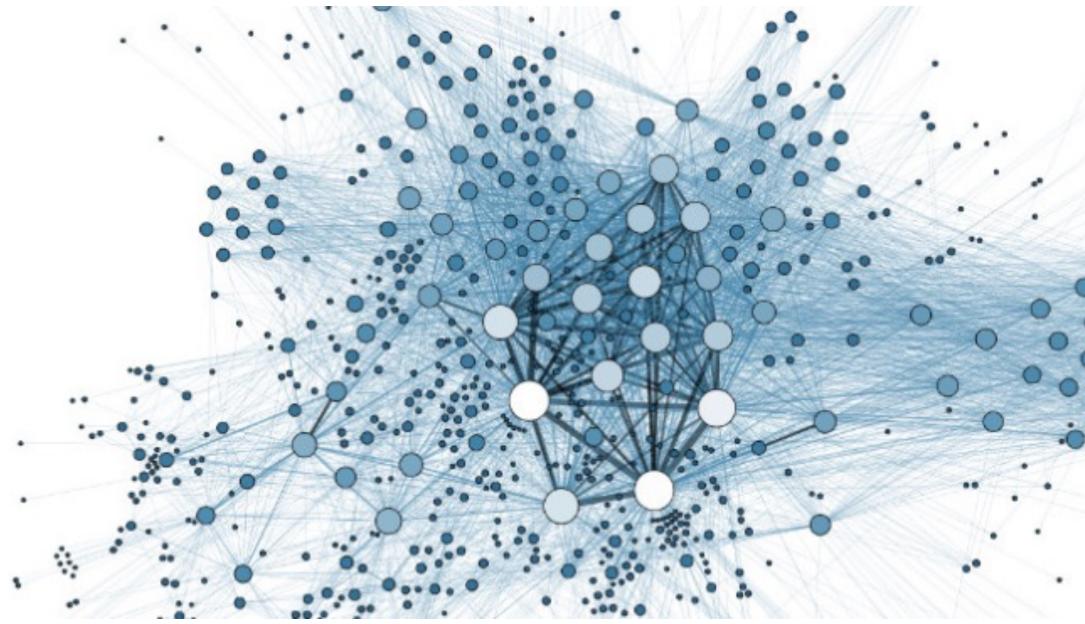
•The blog and newspaper could have similar content but are distant in a Euclidean sense because the newspaper is longer and contains more words.

•In reality, they both mention "restaurant" more than "cooking" and are probably more similar to each other than not. Cosine similarity doesn't fall into this trap.

#SimplifyBanking #LiveBetter

capitecbank.co.za

Hackathon Challenge David Gouvias Data Scientist

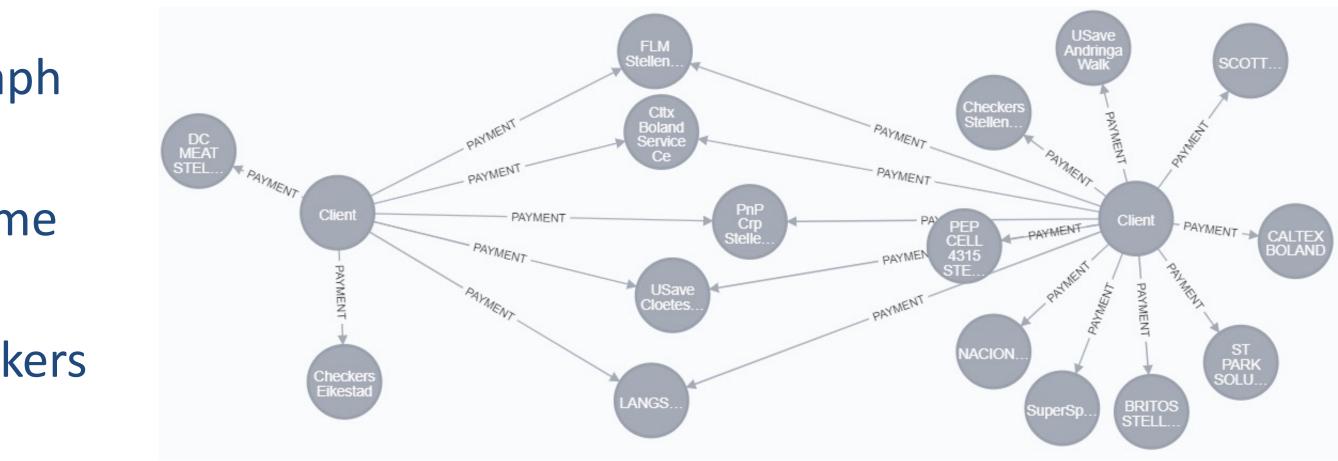


CAPITEC

Hackathon Challenge Client – Merchant network

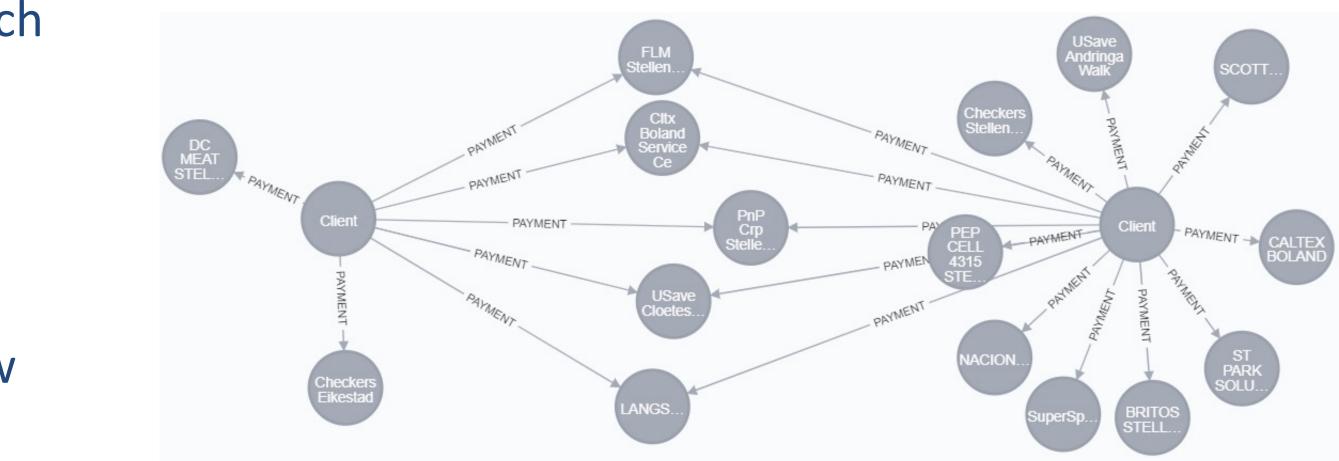
Your challenge is to use our AWS Neptune Graph Database and apply data science algorithms or graph queries to enrich the dataset through :

- Identifying community clusters (people with same shopping and movement patterns),
- Identifying Commuters, travellers, contract workers or traveling salesmen.
- Telling a story at scale of the client communities.
- Identifying fraudulent behaviour.
- Define your own problem you wish to solve.



Hackathon Challenge Business Ideas

- Funeral cover recommender : Recommend which clients are likely to take out a funeral policy.
- Store Finder : Recommend a list of stores in a particular category for a customer need, e.g. Pharmacy.
- Merchant Assisted Marketing: Find a list of new customers that are likely to shop at a particular merchant.



#SimplifyBanking #LiveBetter

capitecbank.co.za

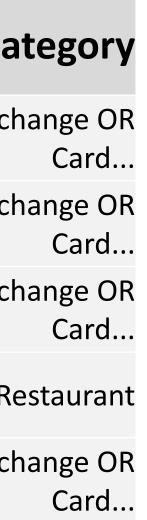
Data Model

Client Informat

Merchant Information

sc Merchant_Cat	Merchant_Type_Desc	Merchant _Type	Merchant_Name	Merchant_UID
All Other Merchants/U.S. Post Exchances	Drug Stores and Pharmacies	5912	Clicks Somerset Mall CPT ZA	0x8E6A682F75803D8F8090F99FBC303455489109D3
All Other Merchants/U.S. Post Exchances	Department Stores	5311	Game Cape Gate Cape Town ZA	0x93003523E22D055C5CC080807FCEB0FA7E0D67C5
ry All Other Merchants/U.S. Post Exchances	Service Stations (with or without Ancillary Se	5541	LINKS SERVICE STATION SOMERSET WEST ZA	0x2711A1A5DC6A4783B17D60E7444FA2AF2386305A
nts Res	Fast Food Restaurants	5814	STEERS - CANAL WALK CENTURY CITY ZA	0xEEE999A1F8C76D2541ABFCB524709066D5B585AB
es, All Other Merchants/U.S. Post Exchances.	Automobile and Truck Dealers: Sales, Service,	5511	SCOTTYS MIDAS STELLENBOSCH ZA	0xF40F5991406F281D684EEF2473692750573D1A95

Age_	Client_UID	
Band 10: 46	0xE3E097DC79D8161B2A2448F6C0930A8B081CD013	tion
Band 9: 41	0xBE461A0CD1FDA052A69C3FD94F8CF5F6F86AFA34	
Band 9: 41	0xE2154FEA5DA2DD0D1732FF30931723C2973003A0	
Band 11: 51	0x4A0E88CF529FBBDC2C0A995BBE88A0A86212ED8D	
Band 11: 51	0xCFA2ED2AAC6D61F44CA9CBA73E1E8946B7CD7D22	



Data Model

Payments

Src_Client	Trg_Client	Tran_Date_Key	Amt_Trans	Num_Trans	
	0 0x0D80273C48EA052178805C8E0BAF5D99E2055A0F	11666	2650		1
UXAU6170460197FFD2CCCA2071C05D7F9DD440DACL	J UXUD6UZ/SC46EAUSZI/66USC6EUDAFSD99EZUSSAUF	11000	2030		T
0x97433A955B75A559C81E84E3BA9D1C3E75F6A1A7	0x0D01084F4C11AE10513480F1CF60271B8F1048CE	11580	145		1
0x5538DE60D60A00EC0A5CE8FC70D9431D3AB171D2	2 0x7BBAC91F5D41B0FDF9B3AE36FB417690C2024C63	11643	4400		2
		11620	500		2
0x0B4A6DC422CED9A7AF2B07867B91EE2B572CA451	0x867B6E1D45F7DCCE3B08AB67F85F298CB3F287E5	11638	500		2
0xC65CB7AD4C7F0C3560B1A1C953CB7664746DCC06	0x88A70DBF116D4DDF50BFB9962FEB2041C3A57BBA	11646	500		1

Purchases

Src_Client	Trg_Merchant	Tran_Date_Key	Amt_Trans	Num_Trans
0xDCD429E847183D910DBFBCB5A37214C2FAF4ACD5	0x5979712AC3DB16655C062AE7DEEB98A12106D4BB	11621	74	1
0x5D122FAFEDDCEFC8C4DBD9995EE058E0731BF712	0x1211AD3B70DC1FF4180AA6F46D3F72C0EBF9655E	11596	260	1
0x397A2F5AFE5F8A28D6F12F5B1757AC14E7367046	0x1211AD3B70DC1FF4180AA6F46D3F72C0EBF9655E	11637	342	1
0x39F8191CFA084AF00F9B530D900F9F34E3846904	0x1211AD3B70DC1FF4180AA6F46D3F72C0EBF9655E	11580	230	1
0x5A4001305F3A5A121A108A146AB96A67B5BC0D05	0x5979712AC3DB16655C062AE7DEEB98A12106D4BB	11627	696.5	1

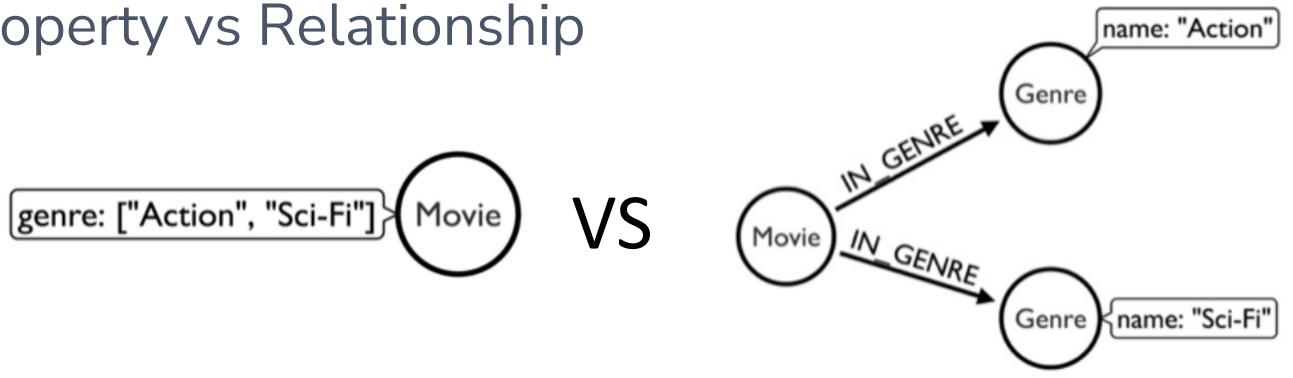
Data Model

Funeral Policy

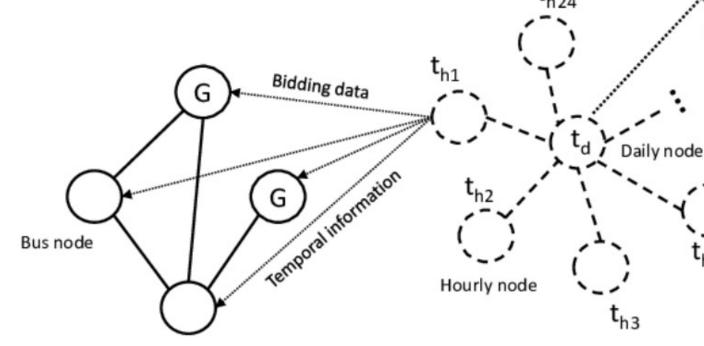
		Policy_Holder_Client_	Role_Ty	Relatio		
FC_Policy_UID	Policy_Holder_UID	UID	ре	nship	Role_Holder_UID	Role_Holder_Client_UID
0xBC2507F01F15E53D585					0x200ECFCEF62452CDFEEE	
CC349DDEBED803589E7A	0xDE47A547194774E381F029		Life		703812F1CA1132CDBEFA5	0xD068C9D2BEC32C2C8D26121
4	99A3413EBEF771B84A6CDE	NaN	Assured	Child	DBB	1683C61F4843B8533
	0x956390B3CD7558291775D				0x956390B3CD755829177	
0x5CE150E313E4C52E250	4C32E0C820D07F11A0B1E23.	0x5641A37860F7B156FAC	Life		5D4C32E0C820D07F11A0B	0x5641A37860F7B156FACEB5EE
E199699E6D04CF84CE917	••	EB5EE50A33D9538903F9C	Assured	Self	1E23	50A33D9538903F9C
0x68BDBBDBEFBE2744B9	0xD67CB8DA6302E2B6695B0	0x8D4F80DF0D37819CDE			0xD67CB8DA6302E2B6695	
DE06E3C612C9C6FF8B2F5	6B2C5E23F7C0A7121B88797.	3E3D2BB9982D111EBAC9	Life		B06B2C5E23F7C0A7121B8	0x8D4F80DF0D37819CDE3E3D2
С	••	7C	Assured	Self	8797	BB9982D111EBAC97C
0xAE0EFC73ADD762BF85	0xB6F2555D8ED822AC1C290	0xCBBE069D36EE6C3DA9			0xB6F2555D8ED822AC1C2	
AC79D3ADDC638F50EE87	5940DFC21B611211C8A7365.	2B9E11C2AE6447FF6F359	Life		905940DFC21B611211C8A	0xCBBE069D36EE6C3DA92B9E1
D8		D	Assured	Self	7365	1C2AE6447FF6F359D
		0xD5C6972618D4D3396A			0xE75470389450760613FF	
0x81E4AC72D5604FA9C06	0xE75470389450760613FF44	186726BE36049C3960029	Life		44840312122790477111C	0xD5C6972618D4D3396A18672
DEC4CE26BAA58F9FFB911	840312122790477111CE1E	8	Assured	Self	E1E	6BE36049C39600298

Graph Database Design Guidelines

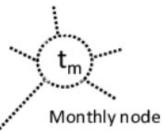
Property vs Relationship

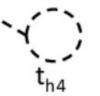


Time-bound Data or Versioning

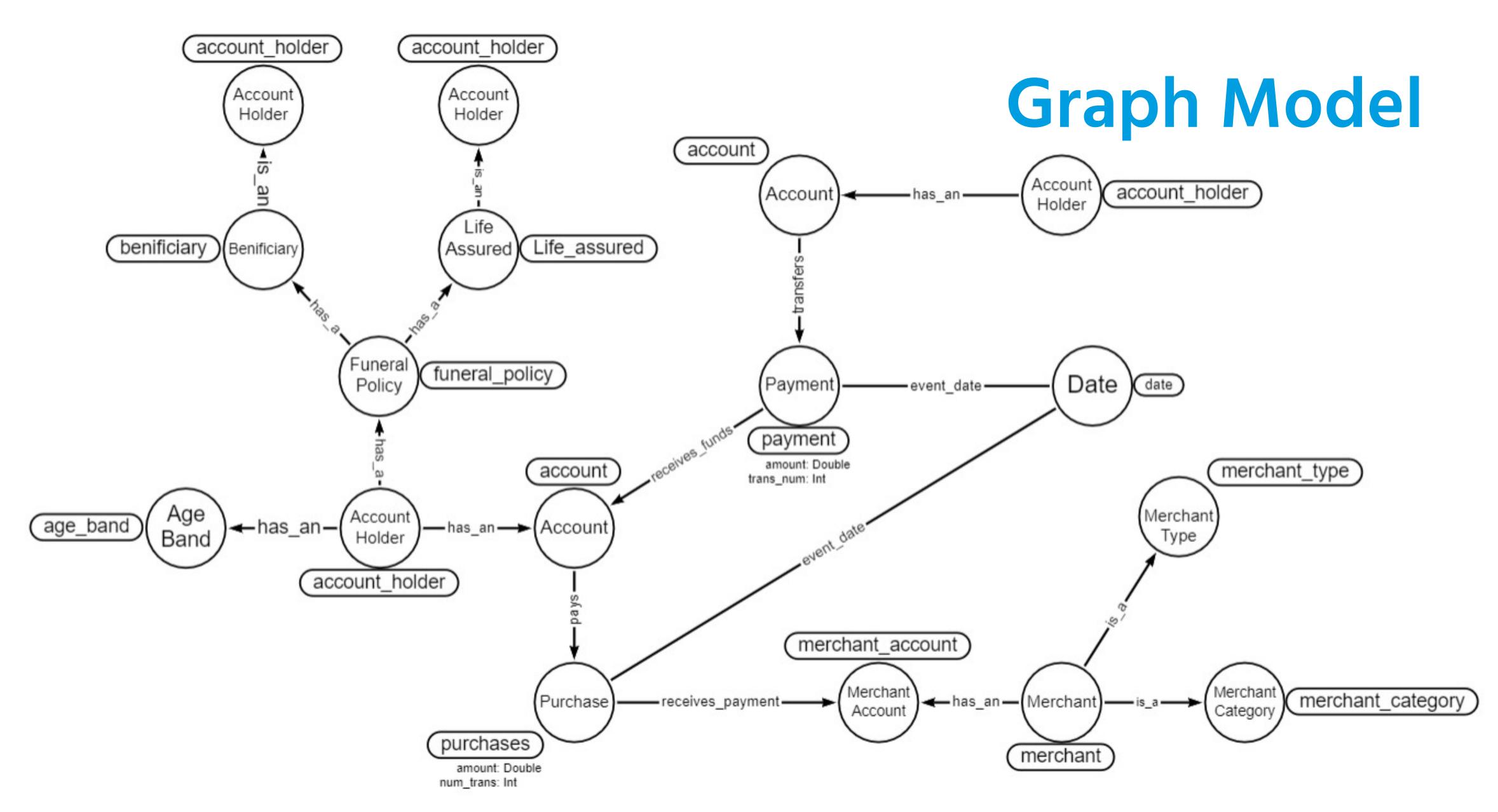


Time tree structure in graph database





© Capitec Bank Limited 47



#SimplifyBanking #LiveBetter

capitecbank.co.za

Next steps What to expect next week.

- Info pack, including login details.
- Value)
- Prizes

• Judges, PW Janse van Rensburg (Technical Value) and Chane Dewar (Business

#SimplifyBanking #LiveBetter

capitecbank.co.za

References

- https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg#/media/Fil e:Present_state_of_the_Seven_Bridges_of_K%C3%B6nigsberg.png
- https://aws.amazon.com/nosql/graph/
- https://neo4j.com/ ${}^{\bullet}$
- Machine Learning with Graphs: https://www.youtube.com/watch?v=aBHC6xzx9YI
- https://eng.uber.com/uber-eats-graph-learning/ •
- https://www.nature.com/articles/d41586-020-03348-4
- https://www.theverge.com/2020/9/3/21419632/how-google-maps-predictsullettraffic-eta-ai-machine-learning-deepmind
- https://www.capitecbank.co.za/