
Computer Science 345/711: 2021 - Project for Term 4

Short project summary

In this project students will explore the Angluin learning algorithm for symbolic finite
state automata (SFA). Angluin learning consists of two conceptual parts, the learner
and the teacher. The learner wants to learn a specific SFA, and in order to achieve
this, may ask the teacher two kinds of questions.
Membership queries: Is the string “w” accepted by the automaton I am trying to
learn?
Equivalence queries: Is my current hypothesis of the automaton I am learning
correct? If I am not correct, provide a counterexample on which my current
hypothesis is wrong.

SFA enhances classical automata by allowing what is referred to as predicates on
transitions. For example, we might label a transition with the predicate “[a-z] union
[0-9]”, which implies that the given transition can only be taken if the next symbol is a
lower case letter or a digit.

Due Date

Monday 1 November at 23:59

Project teams

The project may be completed on your own or in a team of two. This is taken into
account in the marking rubric given below.

Purpose of the project

The aim of this project is to encourage students to familiarize themselves with some
of the recent research on automata theory.

Outcomes

After completing this project, students will have a better understanding of some of
the shortcomings of automata models that were studied in the first part of this
course. Students will also understand the main aspects of the Angluin learning
algorithm and SFA.

Why use SFA?

Finite automata are used in applications in software engineering, including software
verification, text processing, and computational linguistics. Despite their many useful
applications, classical automata models suffer from the major drawback that in most
common forms they can only handle finite and small alphabets. To overcome this
limitation, SFA were introduced. They allow transitions to carry predicates over
Boolean algebras. For this project students may assume that they are working over
the unicode Boolean algebra where predicates are unions of unicode intervals.
Students should start by watching the first 20 minutes of [3] to get a basic
understanding of SFA.

Angluin learning

The purpose of this project is to experiment with SFA active learning algorithms, in
particular Angluin learning. Angluin learning for classical DFA was introduced by
Dana Angluin in 1987 [see 7]. A summary of Angluin learning for classical DFA is
described in [8]. This automata learning algorithm by Dana Angluin was also
discussed in class. Angluin learning can make use of one of two base data
structures, namely an observation table or a discrimination tree. In this project the
focus will be on the simpler of the two, the observation table (which is also less
efficient in various ways compared to the discrimination tree approach). The
discrimination tree approach for Angluin learning of classical DFA is described in
[11], and for SFA in [1], and also in Chapter 8 in [4].

One of the aims of this project is to study the efficiency (in terms of number of
required membership and equivalence queries) of SFA Angluin learning from an
experimental point of view. The SFA that should be used to evaluate Angluin learning
are those obtained from a list of regular expressions provided below.

Read the first 9 pages of [2], which is also summarized in [5] (look at the first 47
slides) in order to understand the basics of SFA Angluin learning.

For this project, students are given a skeleton framework for the algorithm described
in [2]. The skeleton consists of a maven project with the framework needed to
implement the algorithms from [2]. In the src directory of the code skeleton there are
7 packages (inside src/main/java). The packages are:

● Learning: Contains the skeleton for the implementation of the algorithm
described in [2]. This is where you will be working for the majority of the
project.

● algebralearning: Contains the implementation for the algorithm described in
[1]. You may need to use the code in this directory for the benchmarking of the
algorithm in [1] as a challenging aspect of the project.

● automata,logic,strings,theory,utilities: Contains the framework necessary
for the implementation of this project. You may ignore the code contained in
these directories.

The main differences between the classical and SFA Angluin learning algorithms are
as follows: In the SFA case, a partition function is used that makes guesses in terms
of transitions of the automaton being learned, consistent with concrete evidence
previously received from the teacher. Also, in the symbolic case the observation
table is populated in a sparse way.

Students should start the project by completing the following four methods in the
code skeleton (as described in [2]):

● In src/main/java/learning/sfa/Learner.java: fill, close, make_consistent
● In src/main/java/learning/sfa/PartitionFunc.java: intervalPartition

Benchmarking

When referring to benchmarking below, it is implied that the number of membership
and equivalence queries required for learning each SFA, derived from the given set
of regular expressions, should be determined. To run the framework for
benchmarking, use the provided Makefile. To get information on how to use the
Makefile, type make help. This will give a detailed explanation on how to use the
Makefile. The framework takes a regular expression (r=”...”), logging flag (l=”...”), a
partition function choice, and a teacher length and an ordering strategy. For the
purpose of this assignment, you may ignore the teacher length strategy. You may
leave out all of the arguments except the regular expression, and you may provide
the arguments in any order. The benchmarking should be done for a lexicographic
least (i.e. shortest and lexicographic least counterexamples are returned by the
teacher) and a lexicographic random teacher.

A given regular expression is converted to a SFA by the RegexOracle.java class
found in the learning/sfa directory, and uses the regexToDFA framework found in the
learning directory. This SFA is then given as a teacher/oracle to the learner to learn.

Benchmarking regexes:

1. a
2. a*
3. [a-z]*
4. ab*
5. abca
6. (a|e)*
7. a(b|h)*d
8. a[g-kxz]d
9. 0[a-x]z*
10. [a-g][a-m][m-z]

11. a[b-e]cd[x-z]*
12. [\u0-\u10]*[a-z]
13. \u0*[\u0-\u10](\u1|\u65534)*
14.(0|[\u0-\u10])*[\u0-\u10]
15. [\u50-\u65]*\u0[\u247-\u257]
16. ((abc)*e)*z
17.(0|a|A)*
18. (\u0|\u65534)*
19.(\u1|\u754|\u9872|\u65534)*
20.([a-z]|[0-9])*

All of the above regexes are available in the code skeleton in the file benchmarks.txt.
The results (both equivalence and membership queries) for the first 5 regexes are
also given, for testing purposes, in results.txt. These results are obtained when using
the interval partition function (described below), and when BSQ (also described
below) is not used.

Binary search Querying (BSQ)

The algorithm described in [2] performs well if the teacher is well-behaved, i.e.
returns lexicographic least counterexamples, but performs badly when a teacher
returns random counterexamples. To simplify the project, you may assume that the
teacher always returns shortest counterexamples.

Consider the situation where we want to learn the SFA that accepts the language
described by the regular expression: ([a-z])+. This SFA accepts all strings having
only lowercase letters. To learn this, we now consider a teacher which returns
random counterexamples in terms of lexicographic ordering (but still shortest
counterexamples). Assume our learning algorithm hypothesizes a single state SFA
that rejects all strings. The teacher will then return a counterexample string of length
1, consisting of a single character in the range [a-z], and since it is a random teacher,
it may return any one of these. Assume our teacher returns the letter “g”. If we use
the interval partition function (described below), our learner will now assume that on
any character up to and including “g” and also after “g”, the SFA should transition to
an accepting state. The teacher may then return the string “H” (i.e. capital ‘H’), as a
counterexample, since this string is not accepted, but the learner hypothesized that it
should be. The learner then assumes that on strings starting with a character smaller
than or equal to “H”, and also on strings starting with a character between “H” and
“g”, that the SFA should transition to a non-accepting state, but on strings starting
with a “g” or a larger, it should transition to an accepting state. This process of
guessing by the learner (using the partition function) and counterexamples being
returned by the teacher, will continue, and sometimes for a large number of steps, as
the teacher may provide suboptimal counterexamples in terms of learning.

To counter this, Binary Search Querying (BSQ) can be used to find boundary tuples
[b,b’], i.e. b and b’ are neighboring characters in the unicode alphabet (so the
interval [b,b’] contains only two characters) on which the SFA should transition to
distinct states, from a given state. For the example above, we have the boundary
tuples [`,a] and [z,{]. Also, the interval [a,z] contains “g” and the rows for “a”, “g” and
“z” are the same in the observation table, thus the learner hypothesizes that the SFA
should transition to the same state on the interval [a,z]. To find boundary tuples, we
use binary search to find neighbouring unicode characters on which the SFA should
transition to different states (in our example, “a” is accepted, and “`” is rejected, so

the SFA should transition to different states on these two inputs from the initial state).
This method is referred to as Binary Search Querying (BSQ) and works as follows:
Assume we start with an observation table and thus a SFA that is consistent with the
evidence which the learner has received thus far, but that the learner next receives a
counterexample, and thus adds one or more rows (and perhaps also columns) to the
observation table. Let “py” be one of these rows, having “y” as the right most
character. We now consider the smallest interval [x,z] in the unicode alphabet, such
that the observation table has rows labelled with “px” and “pz”, with [x,z] containing
“y”. If there are no such strings “px” and “pz”, we add rows labelled by “pm” and “pn”
to the observation table, where “m” and “n” are the minimum and maximum unicode
values respectively. If “px”, “py” and “pz” are labeled by identical rows, the learner
will conjecture that the SFA should transition to the same state for all characters in
[x,z], from the state reachable when reading “p”. If the rows for “px” and “py” differ,
do BSQ on the interval [x,y]. If the rows for “px” and “py” are identical, the rows for
“py” and “pz” must differ, so then do BSQ on [y,z]. BSQ is done by iteratively
subdividing the current interval [e, g] into two intervals [e,f] and [f,g] (overlapping on
“f”), with “f” (approximately) the middle value of [e,g], and repeating BSQ on one of
these intervals until an interval of length 1 is obtained, which must be a boundary
tuple. Note that we also add the row for “pf” to the observation table, when dividing
[e,g].

Parts of the BSQ algorithm are already implemented in the Learner.java class. There
are two parts to the algorithm that you need to implement, namely:

1. Boundary value initialization: For each access string corresponding to a given
state, append the lex min and lex max (of the unicode Boolean algebra) to the
right of an access string (to a given state of the currently hypothesized SFA)
and add these two strings as rows to the observation table.

2. Binary search: For each string “py” labelling a row in the observation table,
where “p” is a string and “y” a unicode character, find “x” and “z” closest to “y”
in the unicode alphabet such that “px” and “pz” are labelling rows in the
observation table and the interval [x,z] contains “y”. If the rows for “px”, “py”
and “pz” are not all identical, do BSQ (as described above) on [x,z]. See
TODO in the Learner.java class.

You will need to consult src/main/java/theory/BooleanAlgebraFiniteLoset.java (which
represents a Boolean algebra that has a total ordering) for methods that will be
helpful in implementing BSQ.

Challenging aspects of the project

A small part of this project is much more difficult than the rest. For this, select some
of the following aspects to investigate.

● Implement your own partition function and motivate the design of your
partition function in the project report, by benchmarking your custom partition

function and comparing the results obtained with those obtained when using
the interval partition function and BSQ.

● Adapt the BSQ algorithm in the following way: From a training set of regular
expressions (defined above), identify commonly used boundary tuples [b,b’]
from amongst the regular expressions and sort them by the number of
occurrences of that boundary tuple from low to high (break ties with
lexicographic ordering). For BSQ, if the interval contains the boundary tuple
[b,b’] (where [b,b’] is the earliest possible value in the sorted list of tuples),
then add pb and pb’ to the observation table. If they differ, then [b,b’] is a
boundary value in this regex, so BSQ can return with this, otherwise continue
in the intervals [e,b] and [b’,g]. If there is no boundary tuple [b,b’] contained in
[e,g], do BSQ as usual.

● Benchmark the implementation described in [1] (and [4], Chapter 8), which
makes use of a discrimination tree rather than an observation table. The code
for this is contained in the algebralearning directory as indicated above.

● Investigate empirically the benefits of applying the “distributes” procedure
described above Theorem 1 in [2], i.e. benchmark the efficiency of learning
when applying, and also when not applying the “distributes” procedure.

Description of the interval partition function

The goal of a partition function is to take individual evidence elements and divide the
full domain of the Boolean algebra into smaller partitions based on a particular
strategy which is consistent with the evidence elements.

The interval partition function does this by assuming every evidence element
represents an interval from itself to the next evidence element. There is an implicit
ordering on unicode characters, and so we represent them on a “number line”. The
figure below gives an example of a character line for some evidence elements that
we might have.

Fix a state p in the SFA from which we are busy learning transitions. Then in this
example we have that on both ‘d’ and ‘r’ we go to state 0 (from state p), on ‘g’ and ‘j’
we go to state 1 (from state p), and on ‘m’ and ‘v’ we go to state 2 (from state p). The

interval partition function will then use this information to assign the remainder of the
characters to a particular state, according to the following strategy. Every character
in between an evidence element is sent to the state the last evidence element went
to. This is shown in the following figure:

Note that the one exception is characters below the first evidence element. These
characters are sent to the state the first evidence element is sent to as well.

Description of helper methods for partition functions (available in the code
skeleton)

In the framework provided, there are a few helper functions provided to make the
partition functions implementation easier. These helper functions are contained
within the PartitionFunction.java class. They are outlined below:

1. Predicate add(Predicate original, int lower_bound, int upper_bound):
This method takes an original predicate from the Boolean algebra, and a
lower and upper bound, and returns a predicate including what was in the
original predicate, and the characters between the lower and upper bound
(both inclusive).
For example:

add([a-d], g, j) = [a-g]∪[g-j],
add([A-T], U, x) = [A-x],
add([A-T], Z, a) = [A-T]∪[Z,a],
add([a-z], g, m) = [a-z]

2. Element shift(Element original, int d):
This method takes an element from the domain of the boolean algebra and an
integer (-1 or 1) representing the direction, and returns either the previous or
next element in the domain depending on the direction.
For example:

shift(‘d’, 1) = ‘e’, (assuming unicode is the domain of the BA)
shift(‘s’, -1) = ‘r’,

Implementing your own partition function

In order to implement and run your own partition function you must do two things:
1. Add the custom partition function for which the skeleton is given inside

src/main/java/learning/sfa/PartitionFunc.java
2. Uncomment the case statement for the custom partition function within the

switch statement used in the partition() method of PartitionFunc.java
You may also rename your partition function (instead of customPartition) for better
description and readability.

Marking Rubric - Including a short description of the required components

5 x 4 = 20 Implementation of the four
required methods listed above:
fill, close, make_consistent,
intervalPartition

20 BSQ implementation and
benchmarking when using BSQ.

10 Benchmarking when using the
interval partition function.

10 x number of challenging
aspects attempted.

Challenging aspects - see above.

20 Project report

10 Project video

For a single 3rd year student, 90 will be full marks, for a group of two 3rd year
students or a single honours student, 100 will be full marks, and for two honours
students, 110 will be full marks. Note that it is possible to obtain more than 100% for
this project.

In both the project video and report (which should be approximately 10 pages in
length) outline your implementation, the benchmarking results obtained, and also the
aspects listed as challenging that were attempted. Your project report should also be
on the gitlab server of Computer Science, in conjunction with your implementation.
Also add a Readme file on gitlab with a link to your project video. Describe the
benchmarking results obtained and list the aspects implemented in the Readme. The
video should not be hosted on gitlab.

References

1. The Learnability of Symbolic Automata - George Argyros and Loris D’Antoni (this is a
bit on the hardcoe side, but an extended version of this paper is available as Ch8 in
the PhD thesis listed below as reference [4])

2. Learning Symbolic Automata - Samuel Drews and Loris D’Antoni
3. Youtube - The Power of Symbolic Automata and Transducers - Loris D’Antoni - CAV

2017
4. Symbolic Model Learning - New Algorithms and Applications - George Argyros
5. Learning Symbolic Automata - Slides - Samuel Drews and Loris D’Antoni
6. Automata Modulo Theories - Loris D'Antoni, Margus Veanes
7. Wikipedia entry for Dana Angluin
8. Computer Science 345/711 lecture notes on Angluin learning
9. Loris D’Antoni’s Symbolic automata page
10. A quick survey of active automata learning
11. The TTT Algorithm: A Redundancy-Free Approach to Active Automata Learning -

Malte Isberner, Falk Howar, and Bernhard Steffen
12. An Abstract Framework for Counterexample Analysis in Active Automata Learning -

Malte Isberner and Bernhard Steffen
13. LearnLib - An open framework for automata learning

http://www.cs.sun.ac.za/~abvdm/files/symlearning2.pdf
http://www.cs.sun.ac.za/~abvdm/files/symlearning1.pdf
https://www.youtube.com/watch?v=ca9IF-7nSOA
https://www.youtube.com/watch?v=ca9IF-7nSOA
http://www.cs.sun.ac.za/~abvdm/files/symlearning_phd.pdf
http://www.cs.sun.ac.za/~abvdm/files/symlearning_slides.pdf
https://cacm.acm.org/magazines/2021/5/252180-automata-modulo-theories/fulltext
https://en.wikipedia.org/wiki/Dana_Angluin
https://www.cs.sun.ac.za/courses/cs345/Learning.pdf
https://pages.cs.wisc.edu/~loris/symbolicautomata.html
https://wcventure.github.io/Active-Automata-Learning/
https://learnlib.de/wp-content/uploads/2017/10/ttt.pdf
https://learnlib.de/wp-content/uploads/2017/10/ttt.pdf
https://www.researchgate.net/profile/Malte-Isberner?_sg%5B0%5D=98R_3Iyx-zCzQYqS4IfglaqSjvglNKPyrZenSn4tmiKDAd8F4sED_ng1gtiexKWieWxylY0.7iLXRRwwIWFOOQLHSK_t7pTIy2xQ-OuhjGADQTTyLwQrkQqj4QrxznHurnhzrKCXXKQcreiFam_2lnXpVnTpjQ&_sg%5B1%5D=rt8pd9wzhESUB7Yh51Mwrol17to3NDMlOBvL6yB3jWuFTcKSjoE-_2XDXbL4LWrN2B0ycRw.GE-tbrqPIYQeVr_uQx085F1UaymdyRT-rxoxDrV89CBPu2_5Gp3BxsmaGznKZHErRHF2ZaYg7_sWyxjH17Qkhw
https://learnlib.de/

